

New Ceramic Ball Bearings for Electric Motors

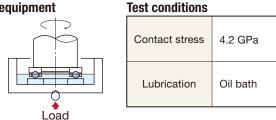
Our newly developed, first in Japan ceramic material makes ceramic bearings available for more applications.

Ceramic rolling elements prevent electrical pitting in bearings for electric motors

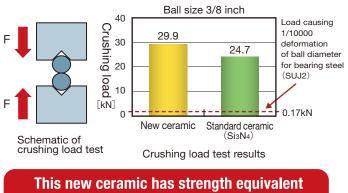
*Change in a material's length in response to a change in temperature of 1 degree Celsius.

 Our newly developed ceramic has similar insulation properties, strength, and durability (little change in acoustic value) with conventional silicon nitride material (Si₃N₄).

(See the table below for details.)


	New ceramic	Bearing steel (SUJ2)	Standard ceramic (Si ₃ N ₄)
Density (g/cm ³)	6	7.8	3.2
Linear expansion coefficient (1/°C)	10.5×10 ⁻⁶	12.5×10 ⁻⁶	3.2×10 ⁻⁶
Vickers hardness (HV)	1280	750	1500
Module of longitudinal elasticity (GPa)	210	208	320
Poisson's ratio	0.31	0.30	0.29
3-point bending strength (MPa)	1200	_	1100
Fracture toughness (MPa·m ^{1/2})	5~6	_	6
Conductivity	Insulator	Conductor	Insulator

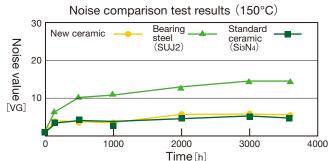
Material properties



More than 3 times longer than calculated fatigue life 4 Fatigue life 3 2 Calculated fatigue life Test result

Test equipment

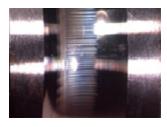
Crushing load test



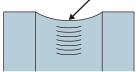
to conventional silicon nitride ceramic (Si3N4).

Inverter motors

High-temperature Noise comparison test results



Test conditions


Lubrication	KVC (urea-based grease)	
Ambient temperature	Outer ring temperature 150°C	
Load	Fa=0.16kN	
Rotational speed	3000 min⁻¹	
Calculated grease life	3600 h	
Test duration	3600 h	

No significant deterioration of the acoustic value of our new ceramic after 3600 hours

Wave-like wear by electrical pitting

Inner ring raceway surface

[Electrical pitting]

Due to the nature of electric motors, harmful voltage is generated by high-frequency current during operation, and above a certain voltage can produce arcing between the bearing raceway surface and rolling elements. Electrical pitting occurs when a surface in rolling contact is locally melted due to the arcing, reducing bearing service life. To avoid such pitting, using an insulating ceramic rolling element is one of the most reliable solutions. Our newly developed ceramic has insulation properties equivalent to those of conventional silicon nitride ceramic (Si₃N₄).

JTEKT Corporation WEB site

https://www.jtekt.co.jp/e/

Fan motors

JTEKT Overseas Hubs

https://www.jtekt.co.jp/e/company/global.html

m lphaThe contents of this catalog are subject to change without prior notice. Every possible effort has been made to ensure that the data herein is correct; however, JTEKT cannot assume responsibility for any errors or omissions. *Please check the disclaimer for bearing products at the following URL.

Reproduction of this catalog without written consent is strictly prohibited.

Disclaimer

https://www.jtekt.co.jp/e/company/disclaimer.html

www.jtekt.co.jp