

オイルシール & ロリング

Oil Seals & O-Rings

JTEKT

オイルシール & ロリング

- JTEKT オイルシールの特長
- JTEKT ロリングの特長
- JTEKT 機能部品の特長
- FEM(有限要素法)解析
- 1. オイルシール 技術解説編

寸法表

2. ロリング

技術解説編

寸法表

- 3. オイルシール・ロリングの使用例
- 4. 参考資料
- 5. オイルシール設計製作仕様書

JTEKT

オイルシール&Oリング

オイルシール&Oリング発行に際して

本カタログは、ISO規格、JIS規格、JASO規格に定められている全形式、寸法系列が含まれています。 また、今日まで長年にわたりお客様と培った実績、経験、技術開発および研究成果を盛り込んで作成して おります。

今回の改訂版は、オイルシールやOリングの選定・取扱いについて内容をさらに充実しました。省資源、地球環境保護への取り組みが重視されるなか、これらに対応するため更なる研究開発を進めております。 今後ともJTFKT製品に一層のご愛顧を賜りますようお願い申し上げます。

オイルシールを選定頂くに当りまして、お問い合わせ・ご要望等がございましたら、このカタログの 最後にあります「オイルシール設計製作仕様書」に必要事項をご記入の上、最寄りのJTEKT事業所ま でご連絡ください。

> 株式会社ジェイテクト、株式会社ジェイテクトシーリング テクノは、わが国の外国為替および外国貿易法、その他の 輸出関連法令によって規制されている製品および技術に関 し、法令に違反して輸出しないことを基本方針としていま す。したがって、このカタログに記載されているふっ素ゴム・シリコーンゴムを用いたオイルシールを輸出される場 合には、最寄りの支社・営業所までお問い合わせください ますようお願いいたします。

★本カタログに記載しているデータは特定条件下で得られた代表値です。本カタログに記載された情報により得られる結果ならびに本製品の安全性についてを保証するものではありません。本製品をご使用になる前に、使用目的に対し適正かつ安全であることをご確認ください。

月 次

■ JTEKT オイルシールの)特長	2
■ JTEKT Oリングの特長		3
		4
		6
FCIVI(有限安系法)件位	π	
1 + / II. 2 II.		
1. オイルシール		
1.1	オイルシールの各部名称と機	能8
	オイルシール呼び番号の構成	10
1.3	オイルシールの形式]]
1.4		15
1.5		
1.6	· · · · · ·	·····27 および取付け ·····27
		カよび取り1)2/ 因と対策31
1.8 1.9		ACN東31 37
1.9	オイルシールリ法編	37
2. ロリング		
		」 グの種類94
2.2		グ呼び番号の構成95
2.3		·····96
2.4		100
—· ·		102
2.6		104
2.7		 3よび対策 ······105
2.8	Oリング寸法編 ····································	107
_		1
3. オイルシール・ロリング	の使用例	
3.1		144
3.2	二輪車	145
3.3	圧延機ロールネック	146
3.4		147
3.5		148
3.6	油圧モータ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	148
4. 参考資料		
4.1	各種ゴム材料の種類と特性…	150
		152
4.3		156
		158
4.5		160
4.6		161
4.7		162
		1
5. オイルシール設計製作仕	惊	164

■JTEKT オイルシールの特長

1. 軽量・コンパクト・省資源に貢献

密封性を保持し、シール幅を小さくコンパクトにしました。

機械の軽量・コンパクト、省資源のお役に立ちます。

2. 最適なリップ構造で、高密封性を発揮

適正なリップの締付け力(緊迫力)を持つ線接触リップ方式を採用しています。

追随性・耐偏心性を損なうことなく低トルクで高密 封性を発揮します。

3. 高い自己潤滑性を持つゴム材料で低発熱・ 長寿命

オイルシールのゴム材料は、長年の研究・実験に基づき高い自己潤滑性を有し、硬化・軟化・老化などの化学的変化を抑えています。

耐久性に優れ、高周速下でも低発熱で長寿命を発揮します。

4. ハイドロ ダイナミック リブによって高密 封・長寿命を実現 (パーフェクトシール、ヘリックスシール、 スーパーヘリックスシール)

一方向または、両方向に設けた特殊なスパイラルねじ (ハイドロ ダイナミック リブ) によって、オイルシールの密封性能と寿命を飛躍的に向上させました。

■ 各種オイルシール

■ 大形シール

■JTEKT Oリングの特長

1. 高い密封性と高い信頼性

水・油・空気をはじめ、各種の気体・薬品に高い密封性を発揮します。

2. あらゆる種類と豊富なサイズ

3. 取扱いが簡単

■ 各種Oリング

JTEKT 機能部品の特長

JTEKTはオイルシールの研究・開発で培った高度な密封技術と洗練された製造技術を生かして、さまざまな機能部品を製造しています。

JTEKT機能部品は、軽量・コンパクト、防音・防振など、機械の機能向上に大いに貢献します。掲載した製品以外も製造しますので、JTEKTにご相談ください。

1. 自動車/産業機械用機能部品

■ 各種機能部品

- ・センター軸受ユニット
- ・防振ゴムー体成形軸受
- ・スパークプラグチューブガスケット
- ・プラスチックギヤシャフト
- ・ダストカバー

■ オートマチックトランスミッション・CVT用 ボンデッドピストンシール

■ フリクションダンパ マニュアルトランスミッション用 エンジンバランスシャフト用

JTEKT

2. 二輪車用機能部品

■ 各種機能部品

- ・エアクリーナジョイント
- ・キャブレタジョイント
- ・マフラジョイント
- ・プラスチックギヤシャフト
- ・オイルストレーナ
- ・メッシュガスケット
- ・ボールコンプクラッチレリーズ
- ・バーチカルガスケット
- ・チェーンテンショナ
- ・チェーンガイド

FEM(有限要素法)解析

ゴムなどの非線形材料は、精度のよい解析は困難であるとされていました。

当社では、このような難問に対して非線形FEM技術を導入することにより新製品開発のための密封理論の解明を進め基礎研究の取組みやゴム材料の設計検討に

大いに威力を発揮しています。

今ではFEMが、身近な設計ツールとして活用されるようになり、信頼性の高い解析評価が可能となり、研究・開発期間の短縮に寄与しています。

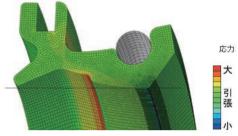
● 圧力変形・応力解析

無負荷時

●金属環3次元応力解析

無負荷時

● 熱伝導解析(温度分布)



軸静止時

●オイルシール3次元リップ振動解析

無負荷時

圧力負荷時 (応力分布図)

圧力負荷時(応力分布図)

軸回転後 (発熱温度分布図)

共振発生時

オイルシール

1. 1 オイルシールの各部名称と機能	
(1) 各部の名称	8
(2) 各部の機能	
1.2 オイルシール呼び番号の構成	
1.3 オイルシールの形式	
(1) 代表的なオイルシールの形式と特長	
(2) 特殊オイルシールの形式と特長	
1.4 オイルシールの選定	15
(1) 形式の選定	15
(2) ゴム材料の選定	16
(3) 金属環とばねの材料選定	18
1.5 軸およびハウジングの設計	18
(1) 軸の設計	18
(2) ハウジングの設計	19
(3) 偏心量	21
(4) 偏心限界量	
1.6 オイルシールの性能	
(1) オイルシールの密封	
(2) オイルシールの寿命	23
(3) リップの温度	
(4) 許容周速	
(5) 許容圧力	
(6) 回転トルク	
1.7 オイルシールの保管、取扱いおよび取付け …	
(1) 保管	
(2) 取扱い	
(3) 取付け	27
(4) 1か所切断したMS形オイルシールの取付け・	
(5) 取付後の注意	
1.8 オイルシール密封不具合の原因と対策	
(1) オイルシールの密封不具合要因	
(2) オイルシールの損傷とその原因、対策事例・	
1 9 オイルシール寸法編	37

■ 1.1 オイルシールの各部名称と機能

1.1 オイルシールの各部名称と機能

(1) 各部の名称

オイルシールは、さまざまな装置に使用される油を はじめとする潤滑剤などの密封対象物が外部に漏れな いようにするとともに、外部からのダスト・異物の侵 入を防ぐ働きをします。 オイルシールの形状には、使用機械や密封対象物に応じてさまざまな形状がありますが、もっとも代表的なオイルシールの形状と各部の名称を図1.1.1に示します。

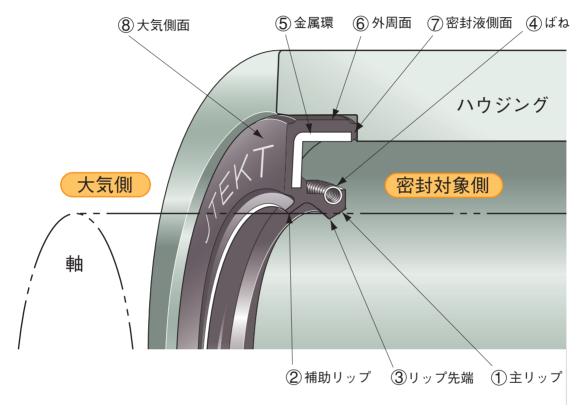


図1.1.1 代表的なオイルシールの形状と各部の名称

(2) 各部の機能

①主リップ

オイルシールを構成するもっとも重要な部分です。 リップ先端が軸の全円周と確実に接触し、密封機能を 発揮します。

オイルシールを装置に取付けて運転したとき、機械 の振動、偏心量、密封対象物の温度や圧力変化などさ まざまなストレスがオイルシールに負荷します。

これらの外部要因に対して、リップ先端が安定して 軸と接触するような力(緊迫力)を発生するよう、主 リップを構成しています。

材料には、弾力性に優れ耐摩耗性の高い合成ゴムを 用いています。

②補助リップ

おもに大気側から、ダスト・異物が侵入するのを防ぎます。

また、主リップと補助リップ間の空間は、オイルシールのための潤滑剤(グリースなど)を保持します。

③リップ先端

オイルシールが軸と接触する部分をいいます。

リップ先端は軸表面に押し付けて密封性能を確保するため、断面がくさび形状に構成され、高周速に耐えられるよう軸と線接触しています。

4)ばね

リップ先端の緊迫力を補強し、軸とリップ先端の接触を 安定化して密封性能を高めます。

また、熱などによって主リップが変形し密封性能が低下することを抑制します。

ばねは密着コイルばねを使用しています。密着コイルばねは初張力を高くとれるので、ばね特性を緩やかな傾きにすることができます。そのため、リップ先端の緊迫力を適切な値に維持し、安定させることができます。

⑤金属環

オイルシールに剛性を与え、ハウジングにしっかりと固定させるとともに、取扱・取付作業を容易にします。

6外周面

オイルシールをハウジングに固定させるとともに、はめ あい面から密封対象物が漏れることや、ダスト・異物が侵 入することを防止します。

外周面は金属タイプとゴムタイプがあり、用途に応じて 選定します。

⑦密封液側面

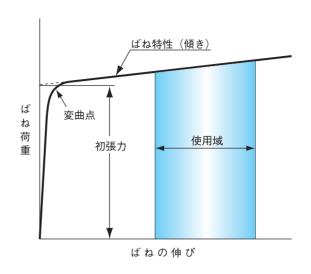
オイルシールの正面側の端面をいいます。

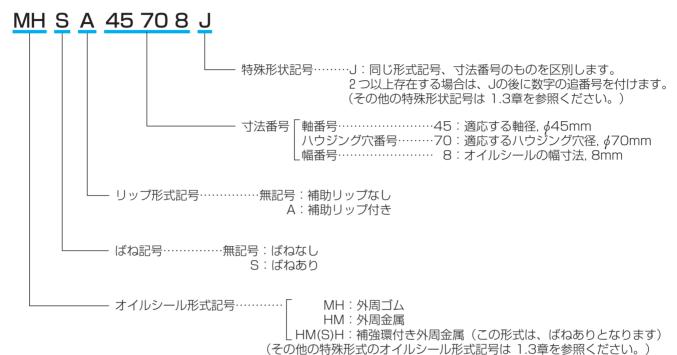
一般に密封対象物に面するように取付けて使用します。

ゴムで構成され、ハウジング肩部に押し付けられ はめあい面の密封機能を補助します。

8大気側面

通常、密封対象物と接触しない側の軸中心線に垂直なオイルシールの表面をいいます。外周面が金属タイプとゴムタイプにより、金属表面とゴム表面があり、用途に応じて選定します。




図1.1.2 オイルシールに用いるばね特性

■ 1.2 オイルシール呼び番号の構成

1.2 オイルシール呼び番号の構成

表1.2.1 オイルシール呼び番号の表し方

呼び番号例

■ JTEKTオイルシールの特長

1.3 オイルシールの形式

(1) 代表的なオイルシールの形式と特長

オイルシールの形式は、おもに外周面の材料、ばね の有無、リップの形式によって分類しています。

おもな形式はISO 6194, JIS B 2402などに規定されています。

表1.3.1に代表的なオイルシールの形式を示します。 また、表1.3.2にJTEKTオイルシールの形式記号と 各規格との対比を示します。

表1.3.1 代表的なオイルシールの形式

		ばねあり¹゚		ばね	なし					
	外周ゴム2)	外周金属 ³⁾	補強環付き外周金属3040	外周ゴム²)	外周金属3)					
補助リップなし										
形式記号	MHS	HMS	HMSH	MH	НМ					
補助リップ付き⁵										
形式記号	MHSA	HMSA	HMSAH	МНА	НМА					
各形式の特長	1) ばねありタイプは、安定した密封性を確保します。 2) 外周ゴムタイプは、オイルシール外周面の密封性を安定させます。 3) 外周金属タイプは、はめあい面との保持力が向上します。 4) 補強環付き外周金属タイプは、補強環によって主リップを保護します。 5) 補助リップ付きは、オイルシールの大気側面に、ダスト・異物などが多い用途に用います。									

表1.3.2 オイルシールの形式対照表

JTEKT	ISO ¹⁾ · JIS ²⁾	IBJIS
MHS	タイプ1	S
HMS	タイプ2	SM
HMSH	タイプ3	SA
MH	_	G
НМ	_	GM
MHSA	タイプ4	D
HMSA	タイプ5	DM
HMSAH	タイプ6	DA
МНА	_	_
HMA	_	_

注1) ISO: 国際標準化機構(International Organization Standardization)

2) JIS: 日本工業規格 (Japanese Industrial Standard)

■ 1.3 オイルシールの形式

(2) 特殊オイルシールの形式と特長

JTEKTと(株)ジェイテクトシーリングテクノでは、 さまざまな機械や用途に対応するため、次のような特 殊形式のオイルシールを用意しています。

表1.3.3 代表的な特殊オイルシールの形式(1)

◎:両方向回転、○:一方向回転

名 称	形式・形状	運動 区分	特 長	用途							
パーフェクトシール	ハイドロ ダイナミックリブ MHSAXBT	0	リップ大気側面に設けた両方向のハイドロダ イナミックリブによって、ポンピング作用を 強化し、軸の両方向回転の密封性能を向上さ せます。	減速機入力軸 デフサイド							
ヘリックスシール	MHSAXRT MHSAXLT	0	リップ大気側面に設けた一方向のハイドロダ イナミックリブによって、ポンピング作用を 強化し、密封性能を向上させます。	エンジンクランク軸 オイルポンプ デフサイド 減速機入力軸							
スーパーヘリックス シール	MHSAXRT MHSAXLT	0	リップ大気側面の一方向に設けたハイドロダイナミックリブを二段形状とし、一段目リブが摩耗しても二段目リブが接触し、ポンピング作用を維持することにより、耐久性能を向上させています。	エンジンクランク軸 オイルポンプ デフサイド 減速機入力軸							
ダブルリップシール	HMSD MHSD	0	オイルシール両側の2種類の密封対象物を分離して密封します。	トランスファー係合部							

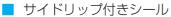

JTEKT

表1.3.3 代表的な特殊オイルシールの形式(2)

◎:両方向回転、-:往復運動、□:固定

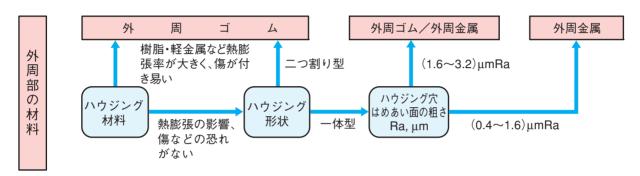
名 称	形式·形状	運動 区分	特長	用途							
耐圧シール	MHSAP GMHSAP	0	圧力によるリップの変形を低減しています。 高圧条件でも密封性能が低下しません。	油圧モータ 二輪車エンジンクランク軸 パワーステアリング入力軸							
往復動シール	MHSAFR	©-	軸の往復動によるリップ変形を低減、軸の往 復動に対応します。	二輪車CVT軸							
外周シール	XMH XMHSA	0	リップがオイルシールの外周側にあり、ハウ ジングとの間で密封するオイルシールです。	フロントハブ リヤハブ							
サイドリップ付き シール	MHSAS	©	大きなサイドリップによってダストや水の侵 入防止性能を強化しています。	デフサイド デフピニオン							
スリーブ一体形泥水 シール		0	泥水などの侵入防止性能を強化しています。	ホイールハブ							
HRシール	HRSA	0	オイルシール外周部の密封性能とハウジングとの保持力を両立しています。	エンジンクランク軸 ホイールハブ							
SIMシール	MHR MHRA		ばねとゴムを一体成形し、ダスト・水など からばねを保護し耐久性能を強化していま す。	プラグチューブ							

■ SIMシール

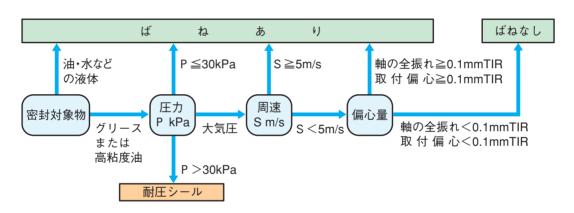
表1.3.3 代表的な特殊オイルシールの形式(3)

◎:両方向回転

名 称	形式・形状	運動区分	特長	用途
総ゴムシール	MS	0	総ゴム製のため取付けが容易です。 1個所切断して軸端から取り付けできない軸 にも使用できる形式もあります。	長い軸、複雑な形の軸
大形シール	YS YSA	0	大径軸用で広範囲なサイズに対応できます。	圧延機ロールネック 各種大型機械
モーゴイルシール	MSJ MSNJ	0	モーゴイル軸受専用のオイルシールです。	モーゴイル軸受
ウォータシール	XMHE	0	ダブルリップで、多量の水に対する密封性を 強化しています。	圧延機ロールネック
スケールシール	WR WRBJ	0	圧延油に含まれるスケールなどの侵入を防止 します。	圧延機ロールネック
Vリング	MVA	0	端面で密封します。比較的狭いスペースに容 易に取付けられます。	圧延機ロールネック



1.4 オイルシールの選定


(1)形式の選定

一般にオイルシールの形式は、下のフローチャート に示すような使用条件によって外周部の材料・ばねの 有無・リップの形式を決定します。 このフローチャートに示されていない特別な条件でで使用される場合は、1.3章(2)特殊オイルシールの特長によって選定してください。

表1.4.1 オイルシール形式選定のフローチャート

ばねの有無

- 1) 圧力・周速・偏心量は互いに複合して影響しますので、各選定条件値はご使用される場合の目安としてください
- 2) TIR: Total Indicator Reading

リップの形式

★選定の例

- ・ハウジング:鉄鋼製の一体型で、ハウジング穴のはめあい面粗さが 1.8μmRa
- ・密封対象物:グリース
- ・圧 カ: 大気圧
- ・速度(周速):6 m/s
- ・大気側の条件:ダスト雰囲気
- ・偏心量:軸の全振れ=0.2mmTIR、取付偏心=0.2mmTIR

この条件の場合、上記のフローチャートから、適合するオイルシールは外周ゴムまたは外周金属、ばねありで、補助リップ付きとなります。すなわち、MHSAまたは、HMSAタイプとなります。

■ 1.4 オイルシールの選定

(2) ゴム材料の選定

オイルシールに用いるゴム材料は、使用温度と密封 対象物によって選定します。

各種ゴム材料の温度特性と各種媒体との適合性を表 1.4.2に示します。

ま1.40 夕廷づり世界の温度性性に夕廷はは4)にの第今世

表1.4.2 各種ゴム材料の温度特性と各種媒体40との適合性					×	: 耐快	生がる	ありませ	±ん															
			使用温度域1)2)		烧	紫料 汨	Ħ			潤滑	油・作	動油				グリ	ノース				薬品	・水		
ゴム材料の種類 (ASTM ³ 略号)	グレード	特長	使用最低温度 使用最高温度 一常用温度域—— 一50 0 50 100 150 200 ℃		ガソリン(レギュラ)	ガソリン(ハイオク)	灯油·軽油	ギヤオイル	エンジン油	A £	が + グリニール	ーテー	ブレーキ油	マシン油	リチウム系	ウレア系	エステル系	ふっ素系	アルコール	ケトン	水	高濃度無機酸	低濃度無機酸	高農 ファーカリ (低濃度アルカリ
	標準タイプ	耐熱・耐寒性・耐摩耗性のバランスも良好です。	-30 100		0		0		0	0													0	
	耐寒タイプ	耐熱・耐寒性のバランスに優れ、耐摩耗性も良 好です。	+40 100 >		Δ		0		0															
ニトリルゴム (NBR)	耐寒・耐熱 タイプ	高強度・低ひずみ性を有しています。 耐寒・耐熱性にも優れています。	+40 110 		Δ		0) C	×	×		0					×		×		
	耐熱タイプ	合成油との適合性に優れ、耐熱性・耐摩耗性も 良好です。	-20 120 		0	0	0		0	0							0							
	食品機械用	食品衛生法試験に適合したニトリルゴム。	-30 100		Δ		0		0															
水素化二トリルゴム (HNBR)	標準タイプ	ニトリルゴムと比べ、耐熱性・耐摩耗性に優れています。	-30 140		0		0	0 0	0) C	×	×		0					×		×	Δ С	
アクリルゴム	標準タイプ	耐油性に優れ、耐摩耗性も良好です。	-20 150 										×				× o					_	Δ ×	X X
(ACM)	耐寒・耐熱 タイプ	耐寒性を改良したアクリルゴム。 耐熱性を維持し、低ひずみ性を有しています。	-30 150										^ _				^ •							
シリコーンゴム (VMQ)	標準タイプ	広温度範囲に使用できます。 耐摩耗性も良好です。	-50 170		×	×	0	× O	0	Δ () A	0	Δ Δ	×	0	0	O ×		0 >	× C		Δ	0 0	
ふっ素ゴム (FKM)	標準タイプ	もっとも耐熱性に優れています。 耐摩耗性にも優れています。	-20 180		0	0	0	0 0		0 () A	×	△ ©		0		0 0		0 >	×	ζ Δ	0	(×	(Δ

〔備考〕この表はあくまでも目安であり詳細はJTEKTにご相談ください。

- 注1) 使用温度はリップ(しゅう動部) の温度をいい、雰囲気温度に加えて機械の発熱・リップの摩擦熱・密封対象物のかくはん熱・他 の部分からの伝導熱などによって決める必要があります。
- 2) 常用最高温度は密封対象物の種類(性状など)により低くなることがあります(表1.4.3参照)。

- 3) ASTM: 米国材料試験協会(American Society for Testing and Materials)
- 4) さび止め油、洗浄液等の成分による影響を受ける場合があるので、JTEKTにご相談ください。

表1.4.3 ゴム材料の油種別常用最高温度の目安(℃)

ゴム材料	ギヤ油	タービン油	エンジン油	ATF
ニトリルゴム	(100)	100	120	(120)
水素化二トリルゴム	140	←	←	←
アクリルゴム	150	←	←	←
シリコーンゴム	使用不可	150	170	(150)
ふっ素ゴム	180	←	←	←

[備考]

()付は極圧添加剤入りを示します。

極圧添加剤とはしゅう動および回転部分の摩耗・焼付きなど を防止するため、潤滑油に添加されるりん・硫黄・塩素系の 化合物です。

これらの添加剤は、熱によって活性化されてゴムと化学反応 を引き起こしゴム物性に悪影響をおよぼします。

よもやま話(第1話)

◎:耐性があります

○:特定の場合を除いて耐性があります

△:特定の場合を除いて耐性がありません

~新人営業マンA君の決意~

やわらかく、よく伸びてまた元にもどるのがゴム のイメージだけど、どのように作られているの?と B主任に聞いたところ『石油(ナフサ)から作られ たゴムポリマー(高分子材)に、ベッドのスプリン グ状のように橋架けする薬品などを加えて、高温高 圧をかけて作ることで、弾力性が長持ちする様にな

るんだよ。高温、高圧をかける厳しい条件、つまり 人間も物も厳しい条件が素晴らしさを生み出してい るんだよ』とのこと。

A君は『ぼくも、逆境に負けず、ゴムのように生 きていきます』と決意していた。

16 17

1.5 軸およびハウジングの設計

(3) 金属環とばねの材料選定

オイルシールの金属環とばねの材料は、いずれも密 封対象物によって選定します。

表1.4.4 金属環とばね材料の選定

材料	金属	属環	ば	ね		
用途	冷間圧延鋼板	ステンレス鋼板	硬鋼線	ステンレス鋼線		
(密封対象物)	(JIS SPCC)	(JIS SUS304)	(JIS SWB)	(JIS SUS304)		
油	0	_	0	_		
グリース	0	_	0	_		
水	×	0	×	0		
海水	×	0	×	0		
水蒸気	×	0	×	0		
薬品	×	0	×	0		
有機溶剤	0	0	0	0		

○:使用可 ×:使用不可 -:通常使用しない

よもやま話(第2話)

〜販売技術員B君の着眼〜

『油が漏れるものと漏れないものがある。すぐに来て欲しい』と連絡を受けて、B君は急いで現場に駆けつけた。

軸径、傷の有無、オイルシールの外観などを調べたが、原因は分からない。

B君『軸の仕上げ方法は?』と確認したところ お客様『表面粗さを出すためにペーパーラップ をした』

そこで、軸の表面状態を調査したところ、油が漏れている軸には漏れ方向にリード目(ら旋状の仕上げ痕)があった。軸を逆回転させたところ、油漏れはすべて止まった。

カタログを示しながら、プランジ研削仕上げを 推奨し、B君は帰路についた。なんだかウキウキ した1日であった。

1.5 軸およびハウジングの設計

(1) 軸の設計

オイルシールは適切に設計された軸と組み合わせる ことによって、その密封性能を発揮することができま す。軸の設計にあたっては、次に示すようにしてくだ さい。

1) 材料

軸の材料は、機械構造用炭素鋼・低合金鋼・ステン レス鋼を用いてください。

黄銅・青銅・アルミニウム・亜鉛・マグネシウム合 金などの軟らかい材料は、低速・清浄な環境など特 定の場合を除いて適しません。

2) 硬さ

一般に、軸は30HRC以上の硬さにしてください。 オイルシールを清浄な環境で使用する場合、軸の硬 さは密封性能にほとんど影響しません。

しかし、ダスト・汚れ油などの環境で使用される場合は、軸の硬さは摩耗などを考慮し、50~60HRCを推奨します。

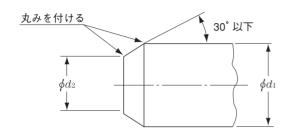
また、硬い軸は傷つき防止などの利点があります。

3) 寸法精度

軸径の寸法許容差はh8にしてください。

オイルシールは、h8の軸と組み合わせて使用することを前提に設計しています。これ以外の寸法の軸と組み合わせると、十分な密封性能を得ることができません。

h8より大きい寸法許容差を使用する場合は、JTEKT にご相談ください。


表1.5.1 h8軸の寸法許容差

1107ドナギ	d, mm	寸法許	容差 µM
—————————————————————————————————————	α, IIIIII		h8
を超え	以下	上	下
3	6	0	-18
6	10	0	-22
10	18	0	-27
18	30	0	-33
30	50	0	-39
50	80	0	-46
80	120	0	-54
120	180	0	-63
180	250	0	-72
250	315	0	-81
315	400	0	-89
400	500	0	-97
500	630	0	-110
630	800	0	-125
800	1 000	0	-140

JTEKT

4) 軸端の面取り

軸にオイルシールを取り付けるとき、リップを傷つけることがないよう軸端には次に示すような面取りを設けてください。

軸径の四 d1, 1		$d_1 - d_2$	車由名
を超え	以下	mm	を起
_	10	1.5以上	5
10	20	2.0以上	-
20	30	2.5以上	9
30	40	3.0以上	13
40	50	3.5以上	24

軸径の四 d1, 1	$d_1 - d_2$	
を超え	以下	mm
50	70	4.0以上
70	95	4.5以上
95	130	5.5以上
130	240	7.0以上
240	500	11.0以上

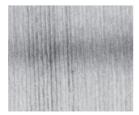
[備考] 軸端に丸面取りを設ける場合も、上表の値以上にしてください。

図1.5.1 軸端の面取り

5) 表面粗さと仕上げ方法

オイルシールの密封性能を確保するために、リップが接触する軸の表面粗さは $0.1 \sim 0.32 \mu mRa$ および $0.8 \sim 2.5 \mu mRz$ に仕上げてください。

また、軸表面に機械加工リード目があると、軸が回転 したときに密封対象物を軸方向に送る作用が発生し、 オイルシールの密封性能を損なう恐れがあります。


軸のリード目が発生しないよう注意して仕上げてく ださい。

そのため軸の仕上げ加工には、プランジ研削がもっとも適しています。また、軸のうねりを抑えるため、軸と砥石の回転速度比が整数値でない研削条件で加工してください。

■ 良い仕上げ面の例

■ 良くない例

リード目が見られる。

図1.5.2 軸表面の加工リード目の有無

(2) ハウジングの設計

1) 材料

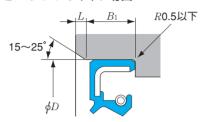
ハウジングの材料には、鋼や鋳鉄を用いればとくに 問題はありません。

アルミニウムやプラスチックを用いる場合は、高温になると材料の線膨張係数の差によって、オイルシールとのはめあいすきまが増大し、シール外周部からの漏れや、シールの脱落などの不具合を起こすことがありますので十分な検討をしておく必要があります。

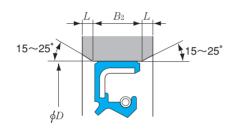
2) 寸法公差

ハウジング穴の寸法許容差は、呼び寸法400mm以下は、H7またはH8を、400mmを超える場合は、H7を適用してください。

表1.5.2 ハウジング穴の寸法許容差


I	呼び寸法 <i>D</i> , mm		寸法許容差 µm			
			H 7		H 8	
	を超え	以下	上	下	上	下
	3	6	+12	0	+18	0
	6	10	+15	0	+22	0
	10	18	+18	0	+27	0
	18	30	+21	0	+33	0
	30	50	+25	0	+39	0
	50	80	+30	0	+46	0
	80	120	+35	0	+54	0
	120	180	+40	0	+63	0
	180	250	+46	0	+72	0
	250	315	+52	0	+81	0
	315	400	+57	0	+89	0
	400	500	+63	0	_	_
	500	630	+70	0	_	_
	630	800	+80	0	_	_
	800	1 000	+90	0	_	_
	1 000	1 250	+105	0	_	_
	1 250	1 600	+125	0		_

■ 1.5 軸およびハウジングの設計

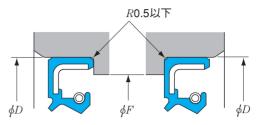

3) 面取り

ハウジング穴の入り口にはシールの取付けを容易にするため、次に示すような面取りを設けてください。

●底付きハウジング穴の場合

●貫通穴の場合

単位:mm


オイルシールの呼び幅, b		$B_1\mathcal{O}$	$B_2\mathcal{O}$	I.
を超え	以下	最小寸法	最小寸法	L
_	10	b+0.5	b+0.5 $b+1.0$	
10	18	<i>0</i> ±0.5	<i>0</i> + 1.0	1 -
18	50	b+0.8	b+1.6	1.5

[備考] bの値はシールの幅寸法を示します。

図1.5.3 ハウジング穴の面取寸法

4) 肩部寸法

ハウジング穴に肩を設ける場合の寸法は次のようにしてください。

単位:mm

オイルシールの	F	
を超え	以下	T'
_	50	D-4
50	150	D-6
150	400	D-8

[備考] Dの値はシールの外径寸法を示します。

図1.5.4 ハウジングの肩部寸法

5) 表面粗さ

オイルシールの固定を確実にし、外周部からの漏れ を防ぐためにハウジング穴の表面粗さは次に示すよ うにしてください。

表 1.5.3 ハウジング穴の表面粗さ

シールタイプ	ハウジング穴の表面粗さ	
外周金属タイプ	0.4∼1.6μmRa	
外向並属タイノ	1.6∼6.3µmRz	
外周ゴムタイプ	1.6∼3.2µmRa	
グト同コムダイノ	6.3∼12.5µmRz	

外周金属タイプのオイルシールで、とくに密封性が必要な場合は、オイルシールの外周面にコーティングを施したオイルシールを用意していますのでJTEKTにご相談ください。

(3) 偏心量

オイルシールを装置に取り付けて運転したとき、軸の振れが大きいとオイルシールのリップ先端は軸の振れに追随できなくなり密封対象物が漏れることがあります。この"振れの量"を偏心量といいます。

偏心量は、"軸の全振れ"と"取付偏心"との和になります。

軸の全振れは、軸中心と軸中心回転軌跡の中心との 軸偏心量の2倍で、一般に振れ(/)で表します。

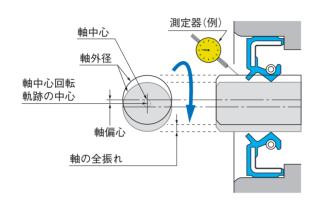


図1.5.5 軸の全振れ

取付偏心は、ハウジング穴中心と軸の回転中心との偏心量の2倍で表します(測定器を軸の回転中心基準で回転させ、計測した偏心量1と偏心量2の和)。各値は、一般にTIR (Total Indicator Reading) で表されます。

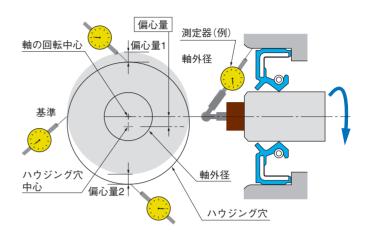


図1.5.6 取付偏心

(4) 偏心限界量

オイルシールのリップ先端が軸の全振れに追随できなくなる限界をオイルシールの偏心限界量といいます。

個々のオイルシールの偏心限界量は、オイルシールの形式・寸法・ゴム材料などのオイルシールに関する要因だけでなく、軸の精度・温度・回転速度などさまざまな要因に影響されるため正確に定めることは困難です。

オイルシールの偏心限界量の例を図1.5.7に示します。

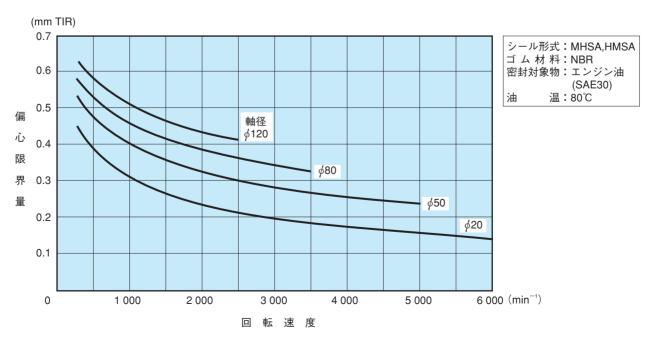


図1.5.7 オイルシールの偏心限界量(参考)

Ⅰ 1.6 オイルシールの性能

1.6 オイルシールの性能

(1) オイルシールの密封

オイルシールは各種機器の潤滑油などが外部に漏れるのを防ぐために使用します。

オイルシールは図1.6.1のように、リップ形状や回転時の軸との接触状態によってポンプカ(油を戻す力)を発生させ、油などを密封しています。

ポンプ力の大きさは、一定時間あたりの油を戻す量(=ポンプ量)であらわされ、ポンプ量が大きいほど密封性能も向上します。

このポンプ量は、回転速度や油の粘度などさまざまな要因により変化します。

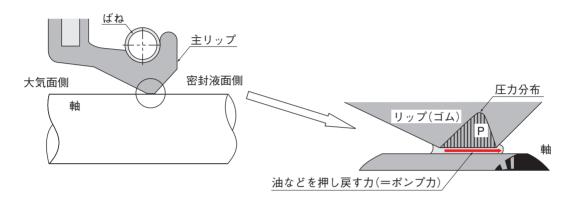


図1.6.1 オイルシールの密封

図1.6.3は回転速度とポンプ量の関係について示しますが、ポンプ量は回転速度が上昇するほど大きくなります。

またポンプ量はハイドロダイナミックリブを付加す

ることにより、オイルを押し戻す力が向上(図1.6.2) し、プレーンシール(ハイドロダイナミックリブのないシール)より大きくなります。

図1.6.2 ハイドロダイナミックリブによる ポンプカの向上

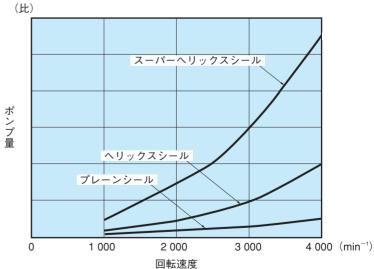


図1.6.3 回転速度とポンプ量(参考)

(2) オイルシールの寿命

オイルシールの寿命とは、ゴム材料の摩耗、オイル やグリースの使用による化学的劣化、硬化などによっ てリップの密封機能が損なわれることをいいます。

オイルシールの寿命は、運転温度、偏心量、回転速度、密封対象物、潤滑条件などさまざまな要因に影響されますので、正確に求めることは困難です。

オイルシールの寿命に影響するさまざまな要因のうちおもなもの(ゴム材料、潤滑油の種類、およびリップ温度)をパラメータとするオイルシールの寿命推定線図を参考として下に示します(図1.6.4)。

なお、この図の寿命は目安であり、使用条件により 寿命が短くなる場合もあります。

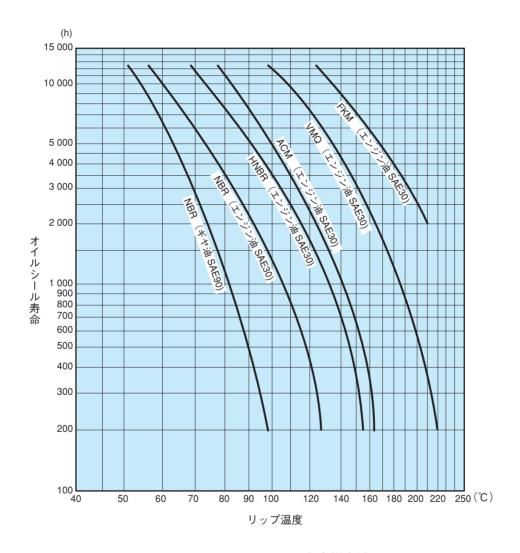


図1.6.4 オイルシールの寿命推定線図

(3) リップの温度

寿命推定線図を利用するにあたってはリップ温度を 精度よく推定することが重要になります。

オイルシールを装置に組み付けて運転すると、軸の 回転に伴いリップ先端で摩擦熱が発生します。リップ の温度は、摩擦熱による供給エネルギー量とオイルシ ールの取付周辺構造および温度差などに依存する放熱 エネルギー量の平衡によって定まります。 しかし、これに関係する因子は多いので、リップ温度を正確に求めることは困難です。

本カタログでは、リップ温度を最適な状態の下で推定する手順を示します。

1.6 オイルシールの性能

●リップ温度の推定

リップ温度を推定する簡便な方法として実験に基づ く温度上昇推定方法を下に示します。

温度推定の手順

①使用する軸の寸法と回転速度を用い、次の計算式によってリップ先端の周速(すべり速度)を求めます。

$$v = \frac{\pi dn}{60 \times 1000}$$

ここで v: リップ先端の周速, m/s

π:円周率 d:軸径, mm n:回転速度, min⁻¹

- ②雰囲気温度を仮定します。
- ③図1.6.5において、雰囲気温度線と周速の交点を求めます。
- ④交点の縦軸座標値を読み取ります。
- ⑤雰囲気温度に縦軸座標値を加算してリップ温度を算出します。

[算出例]

オイルシールの運転条件が下の場合

軸径 : φ50 mm 回転速度 : 4 000 min⁻¹

雰囲気温度:80 ℃ リップの周速を計算します。

$$v = \frac{\pi \times 50 \times 4000}{60 \times 1000} = 10.5 \text{ m/s}$$

図1.6.5において、雰囲気温度80℃と周速10.5 m/sの交点を求めるとリップの温度上昇は20℃となります。したがってリップ温度は、

80+20=100℃ と推定できます。

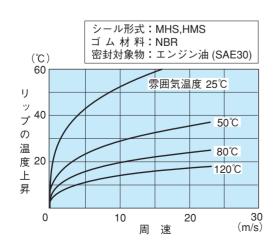


図1.6.5 リップの温度上昇推定線図(参考)

(4) 許容周速

オイルシールを装置に取り付けて運転したとき、オイルシールのリップ先端は、さまざまな要因によって生じる偏心量(軸の全振れと取付偏心の和)に追随して軸との接触を維持し、密封性能を確保します。

しかし、軸の回転が速くなるとリップ先端が偏心量 (軸の全振れと取付偏心の和) に追随できなくなり、密 封性能を維持できなくなります。

このときの速度をオイルシールの許容周速といい、 リップ先端と軸の相対的な速度で表します。

オイルシールの許容周速には、偏心量がもっとも影響を及ぼしますが、振れが小さい場合はゴム材料やシール形式ごとにほぼ一定の値になります。一定の精度に仕上げた軸とハウジングにオイルシールを取り付けて実測した許容周速の参考例を図1.6.6、図1.6.7に示します。

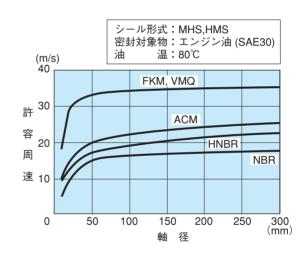


図1.6.6 オイルシールのゴム材料と許容周速の関係

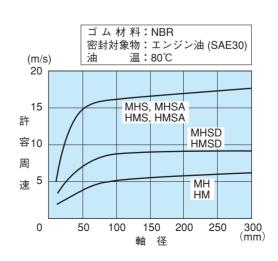


図1.6.7 オイルシールの形式と許容周速の関係

JTEKT

(5) 許容圧力

オイルシールは内部圧力によっても、密封性能を維持できなくなります。

オイルシールが許容できる圧力も許容周速と同じく、 偏心量(軸の全振れと取付偏心の和)に大きく影響さ れます。

本カタログ推奨範囲の精度に仕上げた軸とハウジングにオイルシールを取付けて実測した許容圧力の参考例を図1.6.8に示します。

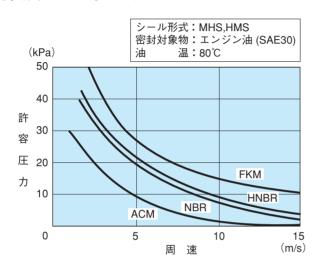


図1.6.8 オイルシールの許容圧力

よもやま話(第3話)

~新人営業マンC君の貴重な体験~

『オイルシールが溶けて、油が漏れてくる』 電話を受けた新人営業マンC君、「大変な事が起きた」と急いでお客様の所へ飛び出した。

現場でオイルシールを観察したところ、確かに リップは著しく摩耗していて、一見するとゴムが 溶けたように思えた。

お客様から『材料不良ではないか?』と疑いの 目で見られた。

はたと困ったC君、カタログを見ながら、新人 営業マン教育で習ったことを思い出し『初期潤滑 はどのように…?』。

初期潤滑不足が考えられたので、『リップにグリースを塗布して、運転してみてください』。運転を始めて、待つこと2時間。油漏れの発生はなく、分解して調査したがリップの摩耗もわずかで良好な状態。

「初期潤滑の大切さが身にしみてわかった」 お客様とともに貴重な体験をしたC君であった。

(6) 回転トルク

オイルシールの回転トルクは、リップの緊迫力、摩擦係数および軸径によって定まり、次の式で表すことができます。

$$T = \frac{1}{2 \times 1.000} \mu dR_{\rm L}$$

ここで T=回転トルク, $N \cdot m$ μ =リップ先端の摩擦係数 (オイル粘度を含む) d=軸径, mm R_L =リップの緊迫力, N

上の式においてリップの緊迫力は、軸に取り付けたときに生じる円周方向のリップ伸び力の分力、リップ腰部のたわみ力の分力、ばね荷重の分力の3つの要因によって決まります(図1.6.9)。

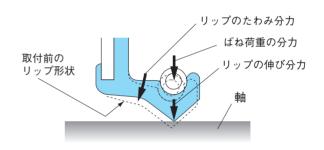
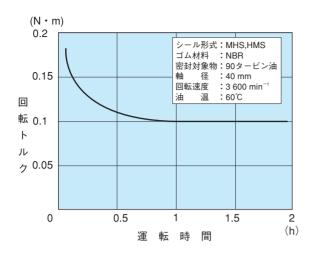


図1.6.9 リップ緊迫力の要因


また、リップ先端の摩擦係数は、使用される潤滑剤 の種類や周速に大きく影響されます。

オイルシールの回転トルクを求めるには個々の使用 条件を考慮して求めなければなりませんので、詳しく はJTEKTにご相談ください。

1) 初期トルク

オイルシールを装置に取付けて運転したとき、運転初期の回転トルクが大きくなることがあります。しかし、運転後1~2時間で安定した値になります(図1.6.10)。

1.6 オイルシールの性能

図1.6.10 オイルシール回転トルクの経時変化(参考)

この初期の大きいトルクは、軸とリップの摩擦係数が安定しないために発生するもので、運転時間の経過に伴いなじみによって摩擦係数が安定するため、回転トルクも安定します。

2) 回転トルクに影響をおよぼす要因

図1.6.11に回転速度と潤滑油が回転トルクにおよぼす影響の例を示します。

一般に、回転速度が速くなると回転トルクは比例的に大きくなります。

また、粘度が高い潤滑油を用いると回転トルクが大きくなります。

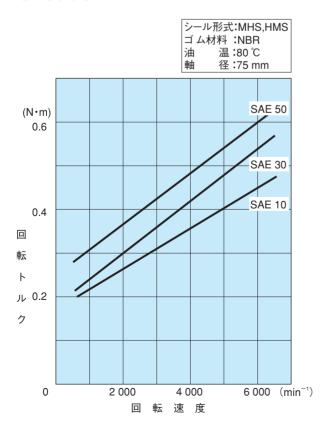


図1.6.11 オイルシールの回転速度と回転トルクの関係

図1.6.12に軸径が回転トルクにおよぼす影響の例を示します。

一般に、軸径が大きくなると、回転トルクは指数的 に大きくなります。

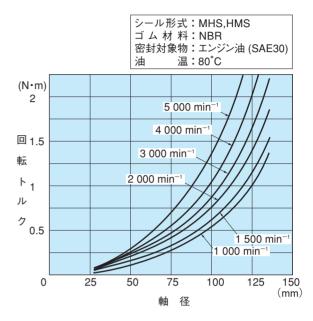


図1.6.12 軸径とオイルシール回転トルクの関係

よもやま話(第4話)

~寒い日のできごと・D君~

『いつもと違い、オイルシールを取り付けにくい。 圧入するとき、ゴムが切れる』とお客様よりきつ いお叱りを受けた。

困り果てた入社2年目のD君、先輩社員に電話でアドバイスを求めた。

上司のE営業課長『風邪引き現象だ。オイルシールも寒いのが嫌なんだ。少し暖めて取り付けてみたら…』。

半信半疑でストーブを組立工場に移動し、少し 暖めてから組み込んだところ、不思議なことにま ったく問題もなく、スムーズに取り付けることが できた。

お客様からは、『問題は解決するし、暖かい所で 仕事もできる。一石二鳥だ』と大変感謝され、鼻 高々で帰社したD君であった。

『最近の我が社のオイルシールは、材料が改良されているので、寒くても大丈夫だよ』

と材料技術部員の解説。

1.7 オイルシールの保管、取扱いおよび取付け

オイルシールからの油漏れはごく些細な不注意で発生することがありますので保管・取扱い・取付けには、 十分注意してください。

(1) 保管

保管については次の事項に注意してください。

- 保管場所はさび発生防止のためにも、室温度30℃ 以下、平均相対湿度40~70%を保持してくださ い。(図1.7.1参照)
- オイルシールを長期間保管する場合には、保管している中で古いものからで使用ください。
- 直射日光または反射日光が当たる場所やオゾンを 発生する電気製品の近くは避けてください。
- オイルシールを作業場に保管する場合は、密閉容器を用い、装置や落下物による機械的な損傷だけでなく、ちり、砂をはじめ汚染物質から保護するようにしてください。
- オイルシールを上積みや吊り下げ保管すると、重 さによってリップ部など変形する恐れがあります ので、できるだけ避けてください。
- 長期保管すると、ゴム表面に白い粉(ブルーム現象)が発生することがありますが性能上は問題ありません。

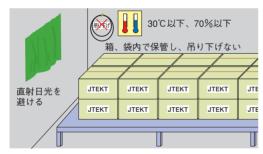


図1.7.1

(2) 取扱い

- オイルシールの運搬時は、変形・ばね脱落防止のために過度の衝撃を与えないでください。
- 包装を解くときにナイフ、ドライバなどの鋭い道 具でシールを傷つけないように注意してください。
- 作業台などの上にオイルシールを放置すると、オイルシールの表面にダスト・異物などが付着することがありますので注意してください。
- オイルシールをはりがねや糸で吊り下げたり、くぎまたは掛けくぎに掛けたりしないでください。シールリップに変形を生じたり、傷を付ける恐れがあります。
- オイルシールを洗浄する場合は白灯油を使用してください。研磨材入りクリーナ、溶剤、腐食性のある液体、化学的な洗浄液などは使用しないでください。

(3) 取付け

- 1) オイルシールを取り付ける前にオイルシールが汚れていないか、異物が付着していないか、損傷がないかを確認してください。
- 2) オイルシールのリップには初期潤滑のため必ず適切で清浄な潤滑油を塗布してください。補助リップ付きオイルシールには主リップと補助リップの間に清浄なグリースを充填してください(図1.7.2)。

図1.7.2 補助リップ付きシールの潤滑

- 3) 推奨グリース
 - ちょう度番号が小さい(軟らかい)
 - 温度によるちょう度変化が小さい
 - 使用温度範囲が広い
 - リチウム系グリース(シリコーンゴム材のシールにシリコーングリース、ふっ素ゴム材のシールにウレア系グリースを用いると、ゴム材料を変質させたり硬化させることがありますので絶対に避けてください。)
- 4) オイルシールを低温下で取り付ける場合には、オイルシールを暖め、シールリップの柔軟性を回復させてから取り付けるようにしてください。
- 5) しまりばめで軸に取り付けられる部品が、リップが接触する軸表面を通過する構造の場合、部品を取り付ける際に軸を傷つけることがないよう注意してください。

このような構造の場合は、リップ接触面の軸寸法を 部品の内径より0.2mm程度小さくしておくと軸表 面の傷つき防止に効果があります(図1.7.3)。

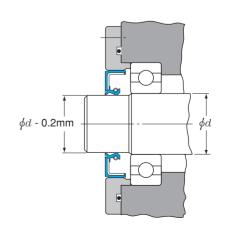
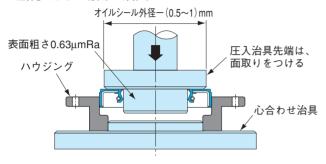



図1.7.3 部品が軸上を通過する構造の場合

1.7 オイルシールの保管、取扱いおよび取付け

6) オイルシールをハウジング穴にプレス圧入する場合 は図に示すような圧入治具を用いてください(図 1.7.4)。また、オイルシールを逆向きにハウジン グ穴にプレス圧入する場合は図1.7.5および図 1.7.6に示すような圧入治具を用いてください。

底付き穴の場合の治具

貫通穴の場合の治具

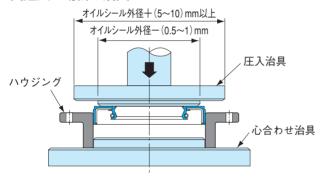


図1.7.4 オイルシールを圧入する治具の例

オイルシールを傾斜したまま無理に圧入すると、はめあい面がむしられたり、かじられたりして、漏れの原因になりますので注意してください。

軸に対して直角に取り付けることは、オイルシールの密封性能を確保するためにも重要なことです。直角に装着するため、ハウジング穴の底部までしっかりと押し込むようにしてください(図1.7.5)。

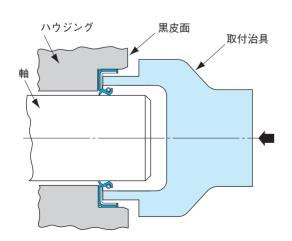


図1.7.5 底付き穴へオイルシールを逆向きに圧入する治具の例

通し穴の場合は、治具を機械仕上げした面に当てて 直角に取付けるようにしてください(図1.7.6)。

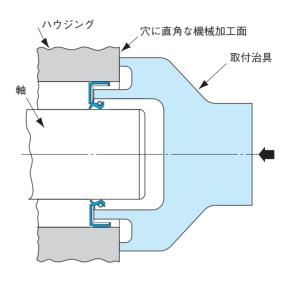
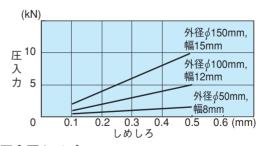


図1.7.6 貫通穴へオイルシールを逆向きに圧入する治具の例


外周ゴムのオイルシールの場合は、スプリングバック(オイルシールの浮き上がり現象)を防ぐために、一定の荷重、一定の速さで2~3度繰り返して押し込んでください。

オイルシールをハウジングに圧入するときに必要な 圧入力の例を示します(図1.7.7)。

圧入する場合は、この値を参考にしてください。

測定条件 潤滑なし ハウジング表面粗さ 1.6μmRa

外周ゴムタイプ (ゴム材料NBR)

外周金属タイプ

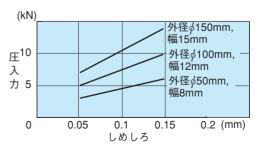


図1.7.7 オイルシールのしめしろと圧入力の関係

7) オイルシールがスプラインやキー溝あるいは軸に設けた穴の上を滑る場合は、リップの損傷を防ぐため 保護治具を用いてください(図1.7.8)。

保護治具を用いることができない場合は、スプラインやキー溝のエッジ部をできるだけ丸め、その部分にグリースを十分塗布して取り付けてください。

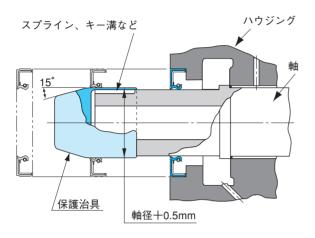


図1.7.8 スプライン、キー溝用保護治具

保護治具にあるすべての角部に丸みを施してください。また保護治具の材料にアルミニウムのような軟らかい金属を用いると、リップに傷がつき易いのでスチールまたはステンレスを使用してください。

8) オイルシールを取り付けた重いハウジングを軸に組み付ける場合や、長く重い軸をシールに組み付ける場合は、オイルシールの一部に軸が強く当たり、オイルシールを損傷する恐れがあります。

このような場合、オイルシールと軸の中心を合わせるためのガイド治具を用いて取り付けるようにしてください(図1.7.9, 図1.7.10)。

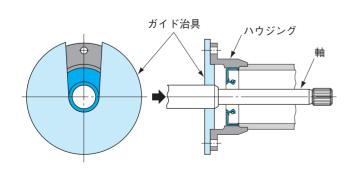


図1.7.9 長い軸を取り付ける場合のガイド治具

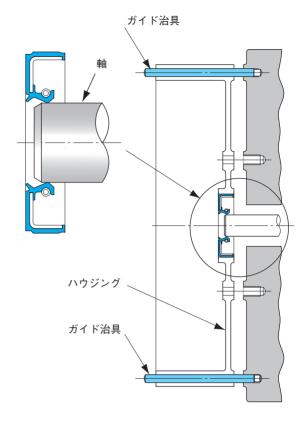


図1.7.10 重いハウジングを取り付ける場合のガイド治具

上図1.7.10のような治具を用いることができない場合、ハウジングと軸を組み付けた後にオイルシールを取り付けるようにしてください。

9) オイルシールを取り外した場合は、使用していたものを再使用せず、新しいオイルシールを使用してください。新しいオイルシールを取り付ける際は、リップ先端が前に使用したリップ接触跡と重ならないようにスペーサなどを用いて0.5mm以上(大形シールの場合は1~2mm)ずらすようにしてください(図1.7.11)。

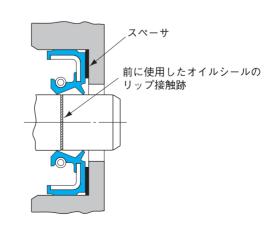


図1.7.11 リップの接触跡を避ける取付例

■ 1.7 オイルシールの保管、取扱いおよび取付け

(4) 1か所切断したMS形オイルシールの取付け

MS形オイルシールには、長い軸や複雑な形状の軸に容易に取り付けできるよう1か所を切断したオイルシールがあります(図1.7.12)。

図1.7.12 1か所切断したMS形オイルシール

この形式のオイルシールを取り付ける場合は、切断 部を接着剤などで接着せず、切断された状態のままで ご使用ください。

止むを得ず接着する場合は、リップ部に段差がつか ないように十分に注意して行ってください。

1ヵ所切断したMS形オイルシールを軸に取り付ける場合は、次の手順でお願いします。

- ①ばねは、あらかじめ軸に取り付けて、フック部を接合しておきます(図1.7.13)。
- ②オイルシールを軸に取り付けます。切断部は軸の上側になるようにします。
- ③ばねをオイルシールのばね溝にはめ込みます。ばね接合部はオイルシールの切断部に対して45°ずらします。
- ④シール押さえを取付けてオイルシールを固定します。 シール押さえが2つ割りの場合は、オイルシールの切 断部とシール押さえの割り位置を一致させないよう に取付けます。

図1.7.13 オイルシール用ばね(フック)の接合

(5) 取付後の注意

- 1) オイルシール取付部付近を塗装する場合、シールリップや軸のリップ接触部に塗料が付着しないように注意してください。
- 2)取付後の洗浄は、できるだけ避けてください。洗浄が必要な場合は、短時間で洗浄し直ちに洗浄液を拭き取るようにしてください。

よもやま話(第5話)

~女子社員F子さんのつぶやき~

社内での会話

入社3年目の営業マンG君『オイルシールに使っているゴムは、石油(ナフサ)ですよね???』 技術主任のHさん『ニトリルゴムやアクリルゴムなどはナフサより合成されたものだが、シリコーンゴムは、土の成分に多く含まれているけい素を原料として製造されるんだよ。また、ふっ素ゴムは蛍光を発することで知られている蛍石からふっ素化合物を取り出して合成、製造されるんだよ』 そばで聞いていたF子さん『さすがH主任』。

1.8 オイルシール密封不具合の原因と対策

(1) オイルシールの密封不具合要因

オイルシールの密封不具合の原因を解明し対策する には、オイルシールのリップを観察するとともに軸の 表面粗さ、異物の有無、潤滑などを総合的に調査し、 判断することが重要です。下表1.8.1に密封不具合のおもな要因を示します。

表1.8.1 オイルシールの密封不具合要因

※スティックスリップ (Stick-slip): リップ先端と軸との間の油膜が部分的に切れ、リップ先端が軸に直接接触することにより回転トルクが変動し、それにともないリップが振動して音が発生する現象。

■ 1.8 オイルシール密封不具合の原因と対策 ■

(2) オイルシールの損傷とその原因、対策事例

オイルシールの損傷の原因と対策事例を表1.8.2に示します。

表1.8.2 オイルシールの損傷とその原因、対策事例(1)

リップからの漏れ(1)

損傷	外観	原因	対 策
リップ先端に 傷	リップ先端に目で見える傷	 1) 軸端面取部のばり、かえり 2) 軸のスプライン、キー溝 3) 異物のかみ込み 4) 取扱不良 	ばり、かえりを除去保護治具を使用(P29 図1.7.8参照)周辺部品の洗浄取扱いを改善(JTEKTにご相談ください)
リップの反転	ばね外れ	 1) 軸端の面取寸法が小さい 2) 軸とハウジングの心ずれ 3) 運転中に仕様以上の大きな内圧が発生した 	軸端の面取寸法を適正化 (P19 図1.5.1参照)心出しの改善(JTEKTにご相談ください)耐圧シールの採用またはブリーザを取り付けて圧力を低減
ばねの脱落	ばねが外れている	 1) 軸端の面取寸法が小さい 2) 軸取付時の心出し不良 3) スティックスリップ 	軸端の面取寸法の適正化 (P19 図1.5.1参照)心出しの改善(JTEKTにご相談ください)リップの予備潤滑など潤滑条件の改善
リップの硬化	硬化・変色	1)使用温度が上昇してゴムの耐 熱限界を超えた 2)潤滑不足 3)稼働中に大きな内圧が発生	・耐熱性に優れたゴム材料へ変更 (P16 表1.4.2参照)・潤滑量、供給方法の改善・耐圧シールの採用または、ブリーザを取り付けて圧力を低減
リップの軟化	潤滑油等に 触れたゴム 部が波打ち	1) ゴム材料の不適 2) 洗油、有機溶剤に長期浸せき	 潤滑剤で膨潤しないゴム材料に変更 (P16 表1.4.2参照) オイルシールの洗浄は使用する潤滑剤で 行う また、グリース潤滑の場合は、白灯油で 行う
軸の摩耗大	軸 摩耗幅 軸 摩耗深さ	 1) 異物のかみ込み 2) 化学的摩耗 (高温、極圧添加剤による) 3) 潤滑不足 4) スティックスリップ 	異物侵入の防止機構を設置昇温防止の対策、潤滑剤の変更 (JTEKTにご相談ください)リップの予備潤滑など潤滑条件を改善 (潤滑量、供給方法の改善)

表1.8.2 オイルシールの損傷とその原因、対策事例(2)

リップからの漏れ(2)

損傷	外観	原因	対策
リップの摩耗大		 1) 潤滑不足 2) 軸表面の粗さ大 3) 異物のかみ込み 	リップの予備潤滑潤滑条件の改善(機器の構造変更)軸表面の粗さを改善(P19参照)周辺部品の洗浄
	摩耗大で、硬化・亀裂が発生	過大な発熱 1) 潤滑不足 2) 仕様以上での運転 a) 過大な周速 b) 大きな内圧	 ・潤滑条件の改善 (機器の構造変更) ・昇温要因の調査と対策 ・耐熱性に優れたゴム材料に変更 (P16 表1.4.2参照) ・耐圧シールの使用またはブリーザを取り 付けて内圧を低減
	摩耗大で二段摩耗	• 大きな内圧	• 耐圧シールの採用または、ブリーザを取り付けて内圧を低減
リップの偏摩耗	摩耗幅が円周上均一でなく主リップと補助リップ各々の最大摩耗位置が同位置にある 偏摩耗	1) 軸とハウジング穴との心出し 不良 2) 軸の傾き	・機器の精度向上と心出しの改善 (心ずれを小さくする)
	摩耗幅が円周上均一でなく主リップと補助リップの各々の最大摩耗位置が180°ずれている	斜め取付け 1) ハウジング穴不良 2) ハウジング穴入口面取りの不適正 3) ハウジング穴の隅のR不適 4) 取付治具の不良	 ・ハウジング穴径の適正化 (P19 表1.5.2参照) ・ハウジング穴入口面取りの適正化 (P20 図1.5.3参照) ・ハウジング穴の隅のRの適正化 (P20 図1.5.4参照) ・取付治具の改善 (JTEKTにご相談ください)
リップの面あれ、条痕	リップ先端のあれ、条痕が発生	1) 異物のかみ込み 2) 潤滑不足	異物侵入の防止機構設置。潤滑条件の改善(機器の構造変更)

■ 1.8 オイルシール密封不具合の原因と対策 ■

表1.8.2 オイルシールの損傷とその原因、対策事例(3)

リップからの漏れ(3)

損傷	外観	原因	対 策
リップ腰部の 裂け	Q(t)	 取扱不良 過大な内圧 衝撃圧 	取扱いの改善 (JTEKTにご相談ください)耐圧シールの採用またはブリーザを取り 付けて圧力を低減衝撃圧の発生を防止(機器の構造変更)
リップの変形	ゴム硬化によるしめしろの減少	・運転中に油温が上昇	・耐熱性に優れたゴム材料に変更 (P16 表1.4.2参照)・昇温要因の調査と対策が必要
リップの面当た り	リップ面全体のしゅう動跡	 過大な内圧が発生 リップ間で負圧が発生 軸の全振れが大きい 取付偏心が大きい 軸径が大きい 	過大圧力の発生を防止 (機器の構造変更)補助リップにすきまをつける軸の加工精度を向上軸径の適正化
リップの裂け		1) スティックスリップによるa) 無潤滑または、潤滑不足b) 軸表面の鏡面仕上げc) 大きな周速2) 衝撃圧	 リップの予備潤滑など潤滑条件改善 軸表面仕上げの適正化(0.1~0.32) μmRa、および(0.8~2.5) μmRzに 仕上げる。 衝撃圧の発生を防止(機器の構造変更)
ブリスタ	ブリスタ	・しゅう動面に浸入した高温油の 凝集拡大a) 潤滑状態の悪化(リップ直下)b) 軸表面の鏡面仕上げc) 大きな周速d) 高緊迫力	 リップの潤滑条件改善 軸表面仕上げの適正化(0.1~0.32) μmRa、および(0.8~2.5) μmRzに 仕上げる。 オイルシールの低緊迫力化
なし	(オイルシールに外観上の異常はない)	1) 軸径小 2) 軸表面の粗さ不適 3) 軸表面の傷 4) 軸表面の加工リード目 5) リップの追随性不足 a) 軸の全振れが大きい b) 取付偏心が大きい c) リップしめしろ小 d) リップの剛性大 e) 低温性能不足 6) オイルシール取付方向の誤り 7) 取付時に異物が付着	 軸径の適正化 軸表面仕上げの適正化(0.2~0.63)μmRa、および (0.8~2.5) μmRzに仕上げる。 軸のばり、かえりを除去または、軸の交換 研磨方法を変更(軸方向に送りをかけない) 心出しの改善 (JTEKTにご相談ください) 軸径の適正化 低トルクシールの使用 耐寒性に優れたゴム材料に変更 (P16 表1.4.2参照) 主リップを密封対象物側へ向ける 取付時の取扱注意

表1.8.2 オイルシールの損傷とその原因、対策事例(4)

はめあい面からの漏れ(1)

損傷	外観	原因	対 策
外周面にむしれかじれ		 ハウジング穴径小 ハウジング穴入口面取りの不適正 ハウジング穴の表面粗さ大 取付治具とハウジングとの同軸度不良 	 ・ハウジング穴径の適正化 (P19 表1.5.2参照) ・ハウジング穴入口面取りの適正化 (P20 図1.5.3参照) ・ハウジング穴粗さの最適化 ・取付治具および取付作業の改善 (P28 図1.7.4~1.7.6参照)
外周面に傷		1) ハウジング穴にかえり 2) ハウジング穴に傷、鋳巣	ばり、かえりを除去傷、鋳巣のないハウジングに交換
オイルシールの 変形	変形	 ハウジング穴径小 ハウジング穴の面取り小 取付治具の不適 	 ・ハウジング穴径の適正化 (P19 表1.5.2参照) ・ハウジング穴入口面取りの適正化 (P20 図1.5.3参照) ・取付治具の改善 (JTEKTにご相談ください)
オイルシールの斜め取付け	オイルシール外周面のはめあい跡が円周上不均一はめあい跡が斜め	 ハウジング穴径小 ハウジング穴入口の面取り小 取付治具とハウジングとの平 行度不良 (ハンマー等を使った、手作業) 	 ハウジング穴径の適正化 (P19 表1.5.2参照) ハウジング穴入口面取りの適正化 (P20 図1.5.3参照) 取付治具および取付作業の改善 (JTEKTにご相談ください)
オイルシールの 抜け	ハウジング軸	 ハウジング穴径大 オイルシールの外径小 オイルシールの圧入位置不適 ハウジングの変形 	 ハウジング穴径の適正化 (P19 表1.5.2参照) オイルシール外径寸法最適化 外周設計改善(外周金属、HRシール) オイルシール圧入位置の適正化 (JTEKTにご相談ください) ハウジングの剛性アップ

■ 1.8 オイルシール密封不具合の原因と対策

表1.8.2 オイルシールの損傷とその原因、対策事例(5)

はめあい面からの漏れ(2)

損傷	外観	原因	対 策
なし	(オイルシールに外観上の異常はな	1)ハウジング穴径大	• ハウジング穴径の適正化
	(I)	2) オイルシールの外径小	(P19 表1.5.2参照)
		3) ハウジング穴の表面粗さ大	オイルシールの交換
		4)ハウジングの穴に傷、鋳巣	• ハウジング穴の表面粗さを改善
		5)オイルシールの取付方向誤り	(P20 表1.5.3参照)
			(応急処置:液状ガスケットをハウジン
			グ穴に塗布する)
			・傷、鋳巣のないハウジングに交換
			・主リップを密封対象物側へ向ける

1.9 オイルシール寸法編(目次)

			形式			ページ
標準オイルシー	外周金属 オイルシール d ₁ 7~540	HM	HMA	HMS	HMSA	- 38
ルシール	外周ゴム オイルシール d ₁ 6~670	MH	MHA	MHS	MHSA	30
	大形オイルシール d1 255~1 640	YS	YSN	YSA	YSAN	56
特	補強環付き オイルシール d1 41~440	HMSH	HMSAH HMS	SHJ HMSHJ	HMSHJ	72
殊才	総ゴムシール d1 35~3 530	MS				78
イル	モーゴイルシール シールインナリング <i>d</i> ₁ 167~1 593	MSJ	MSNJ	HJ HJ	M HPJ	84
シー	スケールシール スケールカバー <i>a</i> 195~1 595	WR	WRBJ	WRRJ, MHJ	HJ	86
ル	ウォータシール d1 230~1 460	XMH	XM, XMHE			90
	Vリング d 38~875	MVA				92

断面図はオイルシールの代表的な形状を示します

- 1) ●印のオイルシールは全て成形型をそろえています。
- 2) 断面図はオイルシールの代表的な形状を示します。
- 3) オイルシールの呼び番号は、形式記号+寸法番号(軸径・外径・幅)となります。
- 4) ゴム材料区分は、N:ニトリル A:アクリル S:シリコーン F:ふっ素を示します。
- 5) 在庫・納期・生産ロットは別途お問合せ下さい。

d_1 6~(13)

- u	# 1 0 0 (13)									
		b		/r /uj	並 冲			/r /⊔		
¢	SD \		ϕd_1							
主要	寸法,	mm	НМ	HMA	HMS	HMSA	МН	MHA	MHS	MHSA
d_1	D	b	NASF	N A S F	NASF	NASF	NASF	NASF	NASF	NASF
6	14	4						•		
7	20	7			•				•	•
8	14	4					•			
	18	4					•			
	18	7							•	
	18	9			•					
	22	5					•			•
	22	7							•	•
9	22	7							•	•
10	17 18	6					•			
	20	5 4					•			
	20	5					•			
	20	7							•	
	21	8							•	
	22	5								•
	22	8			•					•
	25	5	•							
	25	7			•				•	•
	25	8			•					
	_28	8			•				•	
	30	7						•	•	
11	22	7							• •	
	25	7								
12	16	3								
	18 20	5 4								
	22	4	•				•			
	22	7								
	25	5	•				•			
	25	7			• •	•			•	• •
	28	5					•			
	28	7							•	•
	30	9			•					
	32	5					•			
	32	7							•	
13	20	5		•				•		
	25	4	•							

	$d_1 (13) \sim (16)$											
		<u> </u>	<u> </u>	(金 属				ゴム	
			b)								
	1			φά	l_1							
	ϕI) _		<u>,</u>				9				
	I	\wedge	`	1)	•	·	,			·	
主	要?		mm		М	НМА	HMS	HMSA	MH	MHA	MHS	MHSA
	l_1	D	b	N A	SF	N A S F	N A S F	N A S F	N A S F	N A S F	N A S F	N A S F
1	3	25	7									•
		28	5									
	-	30	7 8								•	
		30	9									
1	4	20	3			•						
		24	6						• •		• • •	•
	_	24	7				•					•
		25	4	•								
		26	7							•		
	-	28 32	7									
	5	20	5			•						
_		21	3			•						
		22	4	•								
	_	22	7									•
		23	3			•						
	_	24	4.5			•						
		24 25	7 4				•					•
		25	5									
	-	25	7				• • •		•		•	• •
		27	6							•		
	_	28	6									•
		28	7				• • •				•	
		30	5						•			•
	-	30	7				•				•	• • •
		30	12									
		32	7				•				•	
	-	32	9								•	
		35	5									•
	_	35	6	•					•			
		35	7				•				•	
_	6	35	8									•
1	6	22 24	3.5 4									
		26	7				•	•		•	•	• •
	-	28	4	•					•			
		28	7				•	•				• •
	_	30	5									•
		30	6								• •	
		30	7									

- 1) ●印のオイルシールは全て成形型をそろえています。
- 2) 断面図はオイルシールの代表的な形状を示します。
- 3) オイルシールの呼び番号は、形式記号+寸法番号(軸径・外径・幅)となります。
- 4) ゴム材料区分は、N:ニトリル A:アクリル S:シリコーン F:ふっ素を示します。
- 5)在庫・納期・生産ロットは別途お問合せ下さい。

 d_1 (16)~(19)

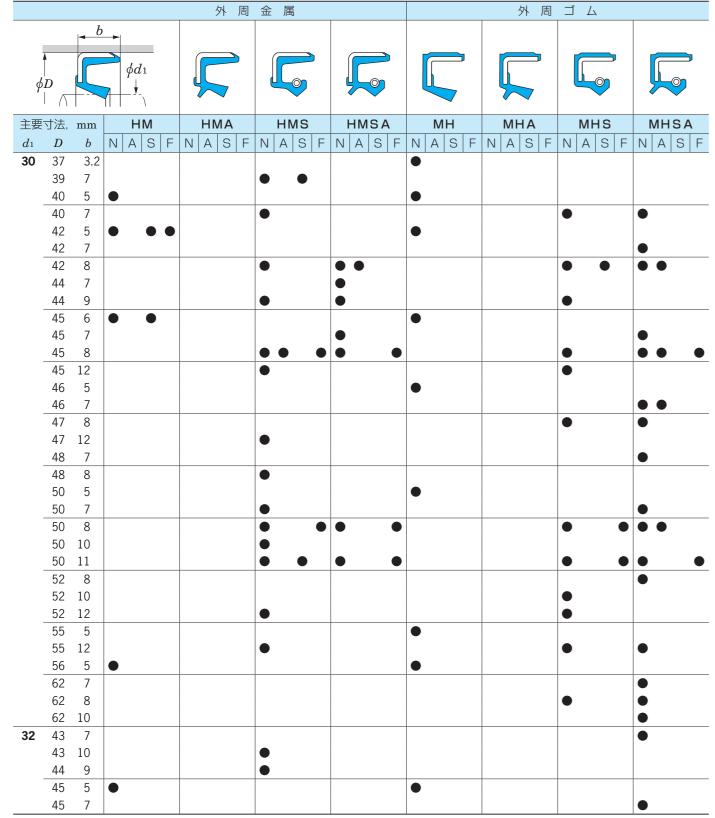
$d_1 (16) \sim (19)$										
	外 周 金 属			外 周	ゴム					
ϕD ϕd_1										
主要寸法,mm HM	HMA HM		МН	МНА	MHS	MHSA				
d_1 D b $NASF$	N A S F N A	SFNASF	N A S F	N A S F	N A S F	N A S F				
16 30 8 32 8 35 7	•									
35 9	•									
23 3 24 5 4 5 28 5 28 6 28 7	•				•	•				
30 5 • •			•			•				
30 6 30 7	•	• •			• • •	• •				
30 8	•	• •			•	•				
32 7					•	•				
32 8		•				•				
35 5						•				
35 6 35 7	•	•			•	•				
35 8		•								
38 10					•					
40 8	•				•					
18 24 4				•						
28 4			•							
30 5 ● 30 7										
30 7	•				•					
30 8 32 8					_					
35 6 ●										
35 7										
35 8						•				
35 9					_					
36 10						•				
38 7			•							
38 10	•									
19 27 4	•									
30 7					•					
30 8						•				
32 8						•				
			<u> </u>	1	I.					

注版	_ a	l 1 (19)-	~(22)							
### dd					外 周	金属			外 周	<u> </u>	
19 35 5 6 35 7 36 8 8 8 8 8 8 8 8 8		ϕ_D									
19 35 5 35 6 35 7 35 8 30 4 4 28 4 4 28 4 4 5 5 40 5 5 8 8 35 10 36 5 7 8 8 35 10 36 6 7 38 8 8 40 5 5 40 7 40 8 8 40 10 40 11 42 6 6 42 8 40 10 40 11 42 6 6 42 8 40 10 40 11 42 6 6 42 8 40 10 40 11 42 6 6 42 8 40 10 40 11 42 6 6 42 8 45 12 47 7 5 52 8 8 22 28 4 0 5 5 22 8 4 7 7 55 8 8 22 28 4 0 5 5 22 8 4 7 7 6 6 47 7 7 55 8 22 28 4 0 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	主		, mm								
35 6 35 7 35 8 38 10 40 6 6 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8				N A S F	N A S F	N A S F	N A S F	N A S F	N A S F	N A S F	N A S F
35 7 35 8 38 10 40 6 20 26 6 0 27 4 4 28 4 28 6 30 4 30 4.5 30 5 30 7 30 9 30 9 30 2 5 32 6 32 7 7 32 2 8 34 7 35 4.5 35 5 5 35 6 35 5 7 35 8 35 10 36 5 36 7 38 8 8 40 5 40 7 40 8 8 40 10 40 11 42 6 42 8 445 12 47 5 47 6 6 447 7 52 8 20 22 28 4 0 5 22 28 4 0	19										•
35 8 38 10 40 6											
38 10 40 6											•
40 6										•	
20											
27 4 28 4 28 6 30 4 30 4.5 30 5 30 7 30 9 32 5 32 6 32 7 32 8 34 7 35 4.5 35 5 35 6 35 7 35 8 35 10 36 5 36 7 38 8 40 5 40 7 40 8 40 10 40 11 42 6 42 8 45 12 47 5 47 6 47 7 52 8 22 8 4	20			1							
28 4 28 6 30 4 30 4.5 30 5 30 5 30 7 30 9 32 5 32 6 32 7 32 8 34 7 35 4.5 35 5 35 6 35 7 35 8 35 10 36 5 5 36 6 7 38 8 40 5 40 7 40 8 40 10 40 11 42 6 42 8 45 12 47 7 5 2 8 22 28 4 4	20										
28 6 30 4 30 4.5 30 5 30 7 30 9 32 5 32 6 32 7 32 8 34 7 35 4.5 35 6 35 7 35 8 35 10 36 5 36 7 38 8 40 5 40 7 40 8 40 10 40 11 42 6 42 8 45 12 47 5 47 6 47 7 52 8					•						
30 4 30 4,5 30 5 30 7 30 9 32 8 32 6 32 7 32 8 34 7 35 4,5 35 5 35 6 35 7 35 8 35 10 36 5 36 7 38 8 40 5 40 7 40 8 40 10 40 11 42 6 42 8 45 12 47 5 47 6 47 7 52 8 22 28 4								•			
30 5 30 7 30 9 32 5 32 6 32 7 32 8 34 7 35 4.5 35 6 35 7 36 8 35 10 36 5 36 7 38 8 40 5 40 5 40 7 40 8 40 10 40 11 42 6 42 8 45 12 47 5 47 6 47 7 52 8 22 28 4									•		
30 7 30 9		30	4.5					•			
30 9 32 5 32 6 32 7 32 8 34 7 35 4.5 35 6 35 7 35 8 35 10 36 5 36 7 38 8 40 5 40 7 40 8 40 10 40 11 42 6 42 8 45 12 47 5 47 6 47 7 52 8		30	5					•		• •	
32 5		30	7			• • •				•	• •
32 6 32 7 32 8 34 7 35 4.5 35 6 35 7 35 8 35 10 36 5 36 7 38 8 40 5 40 7 40 8 40 10 40 11 42 6 42 8 45 12 47 5 47 6 47 7 52 8 8 22 28 4		30	9			•				•	•
32 7 32 8 34 7 35 4.5 35 6 35 7 35 8 35 10 36 5 36 7 38 8 40 5 40 7 40 8 40 10 40 11 42 6 42 8 45 12 47 5 47 6 47 7 52 8				• • •				•			•
32 8 34 7 35 4.5 35 5 35 6 35 7 35 8 35 10 36 5 36 7 38 8 40 5 40 7 40 8 40 10 40 11 42 6 42 8 45 12 47 5 47 6 47 7 52 8				•						• •	•
34 7 35 4.5 35 5 35 6 35 7 35 8 35 10 36 5 36 7 38 8 40 5 40 7 40 8 40 10 40 11 42 6 42 8 45 12 47 7 52 8							•			_	
35 4.5 35 5 35 6 35 7 35 8 35 10 36 5 36 7 38 8 40 5 40 7 40 8 40 10 40 11 42 6 42 8 45 12 47 5 47 6 47 7 52 8						•	•			•	•
35 5 35 6 35 7 36 8 35 10 36 5 36 7 38 8 40 5 40 7 40 8 40 10 40 11 42 6 42 8 45 12 47 5 47 6 47 7 52 8 22 28 4											• •
35 6 35 7 3								•			
35 7 35 8 35 10 36 5 36 7 38 8 40 5 40 7 40 8 40 10 40 11 42 6 42 8 45 12 47 5 47 6 47 7 52 8							•				•
35 8 35 10 36 5 36 7 38 8 40 5 40 7 40 8 40 10 40 11 42 6 42 8 45 12 47 5 47 6 47 7 52 8											
35 10 36 5 36 7 38 8 40 5 40 7 40 8 40 10 40 11 42 6 42 8 45 12 47 5 47 6 47 7 52 8						•	•				•
36 5											•
36 7 38 8 40 5 40 7 40 8 40 10 40 11 42 6 42 8 45 12 47 5 47 6 47 7 52 8											•
38 8 40 5							•			•	•
40 5										•	
40 7 40 8 40 10 40 11 42 6 42 8 45 12 47 5 47 6 47 7 52 8 22 28 4								•			•
40 10 40 11 42 6 42 8 45 12 47 5 47 6 47 7 52 8 22 28 4		40				•	•			•	•
40 11 42 6 42 8 45 12 47 5 47 6 47 7 52 8 22 28 4						•					•
42 6 42 8 45 12 47 5 47 6 47 7 52 8 22 28 4						•	•				
42 8 45 12 47 5 47 6 47 7 52 8 22 28 4						•	•			•	•
45 12 47 5 47 6 47 7 52 8 22 28 4 •											
47 5 47 6 • • • • • • • • • • • • • • • • • •											
47 6 ● 47 7 52 8 22 28 4 ●										•	
47 7 52 8 22 28 4 ●											
52 8 22 28 4 ●											
22 28 4 ●											
	22			•					•		
									•		

- 1) ●印のオイルシールは全て成形型をそろえています。
- 2) 断面図はオイルシールの代表的な形状を示します。
- 3) オイルシールの呼び番号は、形式記号+寸法番号(軸径・外径・幅)となります。
- 4) ゴム材料区分は、N:ニトリル A:アクリル S:シリコーン F:ふっ素を示します。
- 5) 在庫・納期・生産ロットは別途お問合せ下さい。

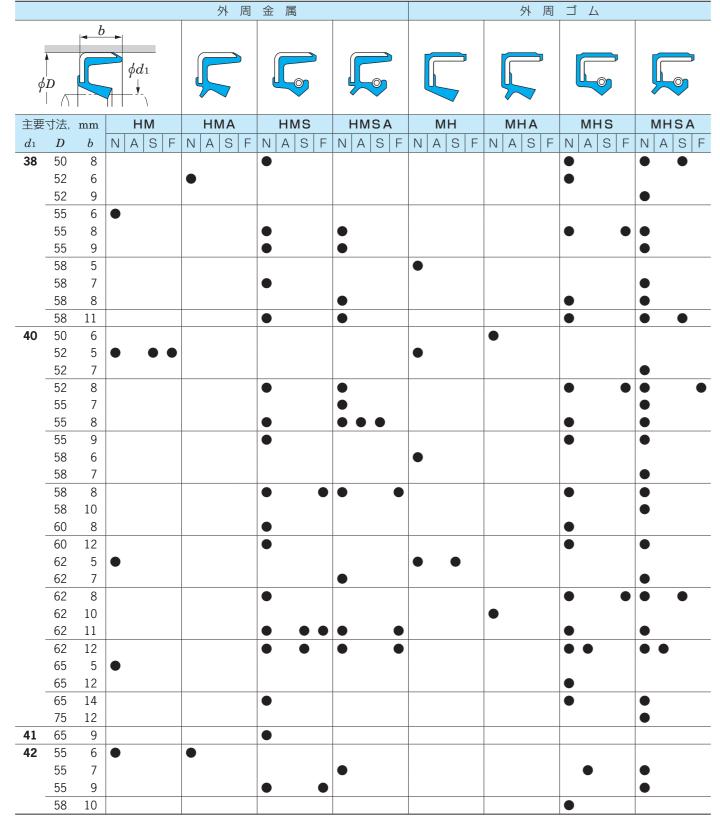
d_1 (22)~(25)

主要寸法 mm		外周金属							外 周 ゴ ム			
注			→ <i>b</i>									
注	,			ϕd_1								
dt D 6 N A S F N A S B	φ	D		→							9	
22 30 4 32 7 34 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	主要	寸法,	mm	НМ	НМА	HMS	HMSA	MH	MHA	MHS	MHSA	
32 7 34 5 35 5 35 7 35 8 36 10 38 8 40 11 42 5 42 7 42 10 42 11 23 35 6 24 35 6 24 35 6 35 7 35 8 38 8 38 10 40 6 40 8 25 32 4 32 8 33 4 35 5 6 35 7 35 8 38 8 38 10 40 6 40 8 40 8 40 8 40 6 40 8 40 8 40 6 40 8 40 8 40 6 40 8 40 8 40 6 40 8 40 8 40 6 40 8 40 8 40 6 40 8 40 8 40 6 40 8 40 8 40 6 40 8 40 6 40 8 40 6 40 8 40 8 40 6 40 8 40 6 40 8 40 6 40 8 40 6 40 8 40 6 40 8 40 6 40 8 40 6 40 8 40 6 40 8 40 6 40 8 40 6 40 8 40 6 40 8 40 6 40 8 40 6 40 8 40 6 40 8			b	N A S F	N A S F	N A S F	N A S F	N A S F	N A S F	N A S F	N A S F	
34 5 35 6 35 7 35 8 36 10 38 8 40 11 42 5 42 7 42 10 42 11 23 35 6 35 7 35 8 38 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	22			•					•			
35 5 35 7 35 8 36 10 38 8 40 11 42 5 42 7 42 10 42 11 23 35 6 24 35 6 35 7 35 8 38 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8										•	•	
35 7 36 8 36 10 38 8 40 11 42 5 42 7 42 10 42 11 23 35 6 24 35 6 35 7 35 8 38 8 38 10 40 6 40 8 25 32 4 32 8 33 4 35 5 5 35 6 36 8 37 8 38 8 38 10 40 6 40 8 40 8 40 6 40 8 40 6 40 6 40 7 40 6 40 7 40 8 40 10								_				
35 8						• •				• • •	•	
36 10 38 8 40 11 42 5 42 7 42 10 42 11 23 35 6 24 35 6 35 7 35 8 38 8 38 10 40 6 40 8 25 32 4 32 8 33 4 35 5 35 6 35 7 35 8 38 8 38 10 40 6 40 8 40 6 40 8 40 6 40 8 40 6 40 8 40 6 40 8 40 6 40 8 40 6 40 6 40 7 40 6 40 7 40 6 40 7 40 6 40 7 40 6 40 7 40 6 40 7 40 8 40 10							•				• •	
40 11		36	10			•						
42 5 42 7 42 10										•	•	
42 7 42 10											•	
42 10												
42 11												
23 35 6										•	•	
35 7 35 8 38 5 38 8 38 10 40 6 40 8 25 32 4 32 8 33 4 35 5 35 6 35 7 35 8 38 7 38 8 40 5 40 6 40 7 40 8 40 7 40 8 40 7 40 8 40 8	23								•			
35 8	24					•						
38 5 38 8 38 10 40 6 40 8 25 32 4 32 8 33 4 35 5 35 6 35 7 35 8 38 7 38 8 40 5 40 6 40 7 40 8 40 10						_						
38 8 38 10						•					•	
38 10				•								
40 6 40 8												
25 32 4 32 8 33 4				•								
32 8 33 4		40	8							•	•	
33	25							•				
35												
35 6 35 7 35 8 38 5 38 7 38 8 40 5 40 6 40 7 40 8 40 10												
35 7 35 8 38 5 38 7 38 8 40 5 40 6 40 7 40 8 40 10												
35 8 38 5 38 7 38 8 40 5 40 6 40 7 40 8 40 10											•	
38 5 38 7 38 8 40 5 40 6 40 7 40 8 40 10		35				•						
38 8 40 5 40 6 40 7 40 8 40 10				• • •				•				
40 5 40 6 40 40 40 40 40 40 40 40 40 40 40 40 40							•			•	• •	
40 6 • • • • • • • • • • • • • • • • • •											• •	
40 7 40 8 40 10												
40 8 40 10							•				•	
40 10						• •	•			• • • •	• • •	
42 5										•	•	
		42	5						•			


d_1	ı (2	5)^	~28								
	- (-	,			金 属		外 周 ゴ ム				
d	bD	<i>b</i>	ϕd_1								
Y			* -\								
主要	寸法,	mm	НМ	НМА	HMS	HMSA	МН	MHA	MHS	MHSA	
d_1	D	b	N A S F	N A S F	N A S F	N A S F	N A S F	N A S F	N A S F	N A S F	
25	42	8			•					•	
	44	7			• •						
	45 45	5 7				•				•	
	45	8			•	•			• •	• •	
	45	10			•	•			•		
	45	11								•	
	47	5	•				•				
	47	7							•	•	
	47	8				•				•	
	48	8			•				•		
	50	12			•	•			•	•	
	52	7									
	52 52	10			•					•	
	62	11								• •	
26	36	8			•						
	38	8			• •	•			•	•	
	40	7				•					
	42 45	8 7			•	•					
	48	11			•						
27	40	8			• •						
	47	11							•		
28	35	5					•				
	37	6	•								
	38	7 8			•						
	40	5	•				•				
	40	7									
	40	8			• •	•			•	•	
	42	8								• •	
	44	8			•	•				•	
	45	6	•				•				
	45	8			•		-		•	•	
	47	8								•	
	48	5	•								
	48	7 8								•	
	48 48	8				• •			•	•	
	50	6	•							-	

- 1) ●印のオイルシールは全て成形型をそろえています。
- 2) 断面図はオイルシールの代表的な形状を示します。
- 3) オイルシールの呼び番号は、形式記号+寸法番号(軸径・外径・幅)となります。
- 4) ゴム材料区分は、N:ニトリル A:アクリル S:シリコーン F:ふっ素を示します。
- 5) 在庫・納期・生産ロットは別途お問合せ下さい。

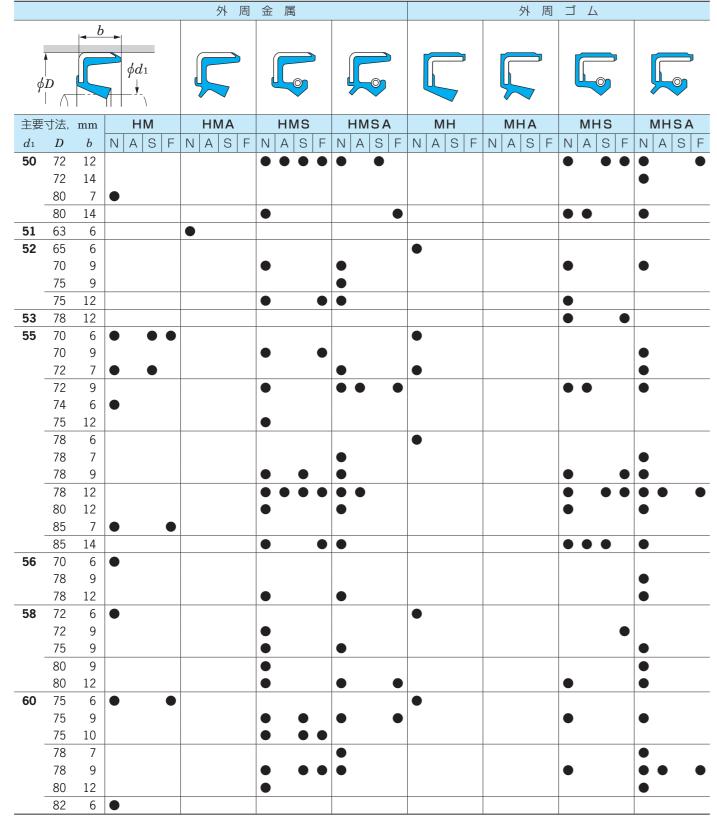
$d_1 \ 30 \sim (32)$


d_1	(3	12)~	~(38)							
			(33)	外 周	金 属			外 周	ゴム	
		_ b)							
φ			ϕd_1							
主要	寸法,	mm	НМ	НМА	HMS	HMSA	МН	МНА	MHS	MHSA
d_1	D	b	N A S F	N A S F	N A S F	N A S F	N A S F	N A S F	N A S F	N A S F
32	45	8			•	•			•	•
	46	8			•				•	
	47	8								
	52	5								
	52	8			•				•	• • •
	52	11			•	•				• •
	54	10								•
33	50	7			•					
34	42	5						•		
	44	8								•
	46	8								
	54	11								
35	45	5	•							
	47	5	•				•			
	47	7			•				• •	
	48	5					•			
	48	7								• •
	48	8			•	•			• •	
	50 50	6 7								
	50	8				•				
	50	11							•	• •
	52	5					•			
	_52	7							•	•
	52	8							_	
	52	9							•	
	52 52	10							•	
	52 52	11 12				•			•	•
	55	5	• •				•		•	
	55	7				•	_			•
	55	8			•	•			• •	•
	_55	9			•					
	55	11				• •			• • •	• • •
35	55	12								•
	60 62	12 10				•				•
36	50	7			•				• •	• •
-	50	10			•					
38	45	8		•						
	50	5	•							

- 1) ●印のオイルシールは全て成形型をそろえています。
- 2) 断面図はオイルシールの代表的な形状を示します。
- 3) オイルシールの呼び番号は、形式記号+寸法番号(軸径・外径・幅)となります。
- 4) ゴム材料区分は、N:ニトリル A:アクリル S:シリコーン F:ふっ素を示します。
- 5) 在庫・納期・生産ロットは別途お問合せ下さい。

d_1 (38)~(42)

_			(7. 0)							
d_1	(4	12)^	~(50)	N E	^ =			N E	_ " ,	
		L		外周	金属			外周	ゴム	
φ	D		ϕd_1							
	寸法,		НМ	НМА	HMS	HMSA	МН	MHA	MHS	MHSA
<u>d</u> 1	D	<i>b</i>	N A S F	N A S F	N A S F	N A S F	N A S F	N A S F	N A S F	N A S F
42	60 60	7 9	•							
	65	7				•				
	65	9							•	
	65	12			• • •	•			•	• •
44	60	9								•
45	55	4	•							
	60	6	• •							
	60	7			•					• •
	60 61	9								
	62	6		•						
	62	7	•				•			•
	62	9			• • •	•			\bullet \bullet \bullet	• • •
	62	10			•					
	65	5	• •				•			
	68	6	•							
	68	7			•					
	68	12			•	•			• •	•
	70	12							•	•
		14			•	•			• •	•
			•							
	72	12				•				•
48	62 62	6 9	•		•					
	65	9			•				•	
	70	7				•				•
	70	9			•				•	•
		12			• •	• •			•	•
50	64				•					
	65 65	6 7	• • •							
	65	9			•	• •				
	68	7					•			
	68	9			•	•			•	•
	70	10			•	•			•	•
		12			•				•	•
	72	5					•			
	72 72	6 7	•							
	72 72									
	72	10			-	•			-	-


46 47

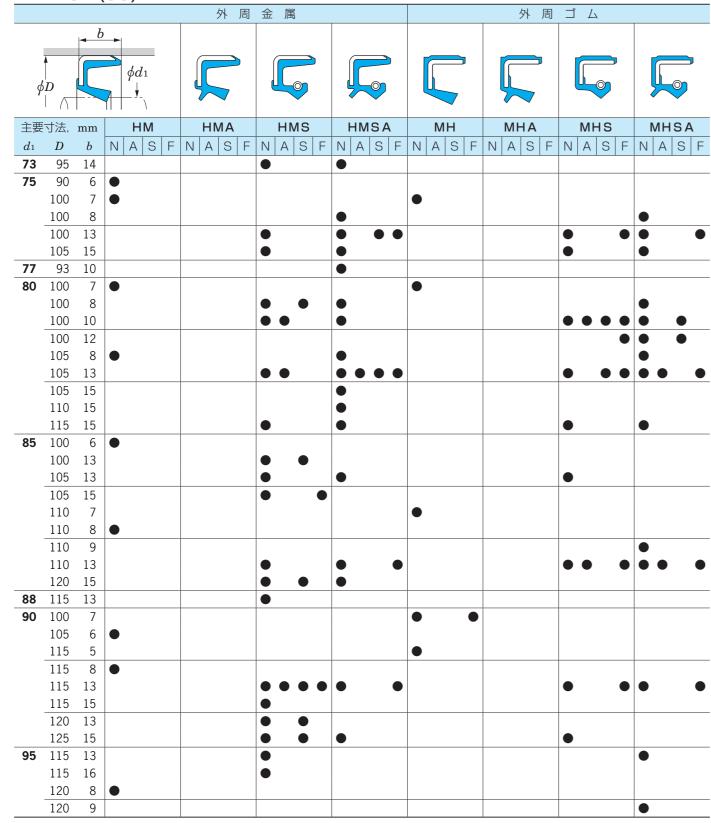
- 1) ●印のオイルシールは全て成形型をそろえています。
- 2) 断面図はオイルシールの代表的な形状を示します。
- 3) オイルシールの呼び番号は、形式記号+寸法番号(軸径・外径・幅)となります。
- 4) ゴム材料区分は、N:ニトリル A:アクリル S:シリコーン F:ふっ素を示します。
- 5) 在庫・納期・生産ロットは別途お問合せ下さい。

d_1 (50)~(60)

_ d 1	(6	0)^	~72							
				外周	金属			外 周	ゴム	
¢	SD \		ϕd_1							
	寸法,		НМ	НМА	HMS	HMSA	МН	MHA	MHS	MHSA
d_1	D	b	N A S F	N A S F	N A S F	N A S F	N A S F	N A S F	N A S F	N A S F
60	82	7				•	•	•		•
	82	9			•					
	82 82	12 14			•				• • •	• •
	85	12								
	90	7	•							
	90	11								•
	90	12								•
	90	14			•				\bullet \bullet	•
62	75	9			•					
	80	9			•					•
	85	12			•	•			• •	•
63	80	9								
	85 85	8 12								
65	80	6					•			
	82	8				•				
	82	10			•					•
	85	10			•	•				
	85	12			•					
	88	6	• •							
	88	8								•
	90	12			• •				••••	• • •
		10								
		12								
		13			•				•	
	95	14			•	•				•
		16				•				
68		12			•	• •				
		13			•	•			•	
70	85	12 6	•			•	•			
	88	12			•				•	• • •
		10	•						_	
	90	12			•				•	•
	92	7	• •				•			
	92	8				•				•
	92	12			•	•			• • •	
	95	13			•	• •			• •	• • •
	100	14			•	•				•

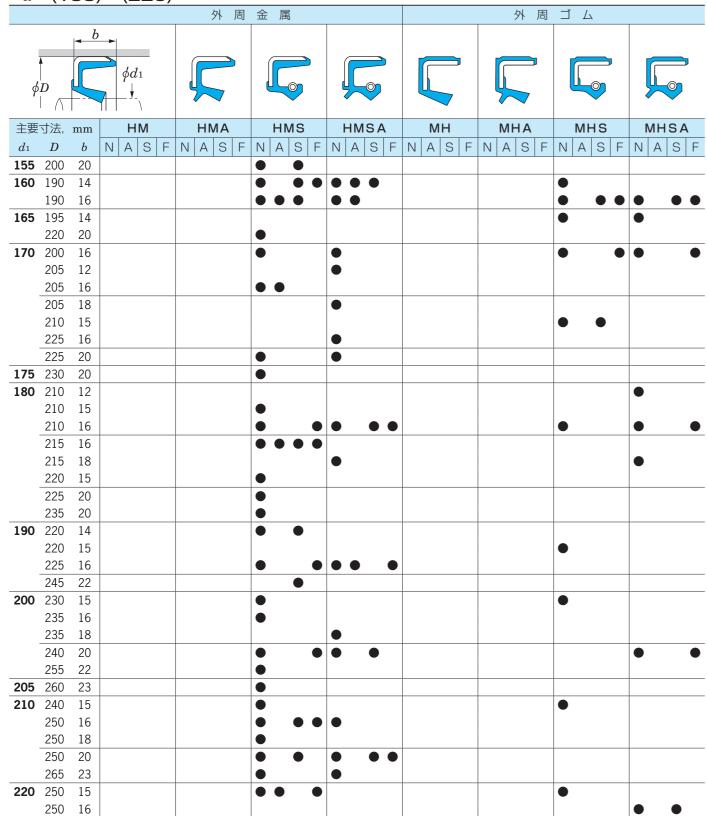
48 49

71 95 13


72 100 12

- 1) ●印のオイルシールは全て成形型をそろえています。
- 2) 断面図はオイルシールの代表的な形状を示します。
- 3) オイルシールの呼び番号は、形式記号+寸法番号(軸径・外径・幅)となります。
- 4) ゴム材料区分は、N:ニトリル A:アクリル S:シリコーン F:ふっ素を示します。
- 5) 在庫・納期・生産ロットは別途お問合せ下さい。

$d_1 73 \sim (95)$


_ d 1	ı (9)5)^	~(155)							
				外 周	金属			外 周	J A	
9	BD \		$\phi d1$							
	寸法,		HM	HMA	HMS	HMSA	MH	MHA	MHS	MHSA
<u>d</u> 1	D	<u>b</u>	N A S F	N A S F	N A S F	N A S F	N A S F	N A S F	N A S F	N A S F
100	120 130 130 135 120 125	13 13 15 13 12 8	•		•	•	•		•	• •
105	125 125 135 130	13 15 15 13			•	•			•	• •
110	135 135 140 140	9 14 15 8	•		• • •	•			•	•
	140 145 145 145	14 15 14 14			• • •	•			•	•
120	150 135 150 150	16 7 9 14	•		•	•			• •	•
	155 155 155 160	16 16			•	•			•	• • • •
	150 160 160 170	14 16 16			• • •	• •			•	•
140	165 175 160 170	16 14 14				•			•	•
145	185 175 175 190	12 14 16			•	•			•	•
	180 180 180 180	14 16 15			• • •	• • •			•	•
	185	15								

- 1) ●印のオイルシールは全て成形型をそろえています。
- 2) 断面図はオイルシールの代表的な形状を示します。
- 3) オイルシールの呼び番号は、形式記号+寸法番号(軸径・外径・幅)となります。
- 4) ゴム材料区分は、N:ニトリル A:アクリル S:シリコーン F:ふっ素を示します。
- 5) 在庫・納期・生産ロットは別途お問合せ下さい。

d_1 (155)~(220)

d_1 (220)~350

<u>u</u> 1	(_	20,), 330				I			
				外 周	金属			外 周	ゴム	
		_ b								
			-							
	1		/ 1							
,			ϕd_1							
φ	D		→							
	/\	`	7 \							
主要	寸法,	mm	НМ	HMA	HMS	HMSA	МН	MHA	MHS	MHSA
d_1	D	b	N A S F	N A S F	N A S F	N A S F	N A S F	N A S F	N A S F	N A S F
220	255	16							• •	
	255	18			•	•				• •
	260	20				•			• •	
	260	22			•	• • •				
	275	23								
000										
230		15			•					
	260	15			•				•	
	260	20				•				
	270	16								•
	270	20								
	285	23								
240		15								
240										
	270	20								
	275	16			•	•			•	• •
	275	18								
	280	19			• • •	•				
250	280	15			•				•	
	285	18				•			•	• • •
	310	25			• •	•				
260	300	20							•	•
	320	25								
270		25								
2/0					_					
	345	15					•			
280		16							•	
	320	18			•					
	320	22				•				
	330	24							•	
	340	28			•	•				
290	330	15							•	
	330	18								
	350									
200					•	-				
300	340									
	345									
	360				•	•				
	370	28				•				
320	360	20				•				
	360	25			•					
	380	25			•					
	380	28				• •				•
340	380	20	1	+			1	1		•
340	400									
		25			_					
	400	28				•				
350	390	20								

- 1) ●印のオイルシールは全て成形型をそろえています。
- 2) 断面図はオイルシールの代表的な形状を示します。
- 3) オイルシールの呼び番号は、形式記号+寸法番号(軸径・外径・幅)となります。
- 4) ゴム材料区分は、N:ニトリル A:アクリル S:シリコーン F:ふっ素を示します。
- 5)在庫・納期・生産ロットは別途お問合せ下さい。

$d_1 360 \sim 670$

<u>u</u>			0/0																			
						外周	金	属									外周	Ï	\triangle			
φ	\$D \	<i>b</i>	ϕd_1		Ţ)			>			5	Į.	—			>		••••••••••••••••••••••••••••••••••••••
主要	寸法,	mm	HM		HI	MA		НМ	S	H	HMS	βA		МН		M	HA		MH	3	MH	HSA
d_1	D	b	N A S	FN	I A	SF	N	A	3 F	N	А	SF	N	A S	F	NA	SF	N	A S	3 F	NA	SF
360	400	17																•				
	420	25																				
370	415	20					•															
380	440	25					•															
	440	28																			•	
395	430	18																				
420	480	25							•													
	480	28																				
460	500	20																			•	
540	600	25																				
670	710	20																				

— スペーサ幅5mm

大形オイルシール

- 1) ●印のオイルシールは全て成形型をそろえています。
- 2) 断面図はオイルシールの代表的な形状を示します。
- 3) オイルシールの呼び番号は、形式記号+寸法番号 (軸径・外径・幅) となります。 例: YS32036018 (320×360×18mm)
- 4) ●印横の※印は呼び番号に-1が付きます。

- 5) スペーサ付きのシールもあります。スペーサ 付きオイルシールの呼び番号は、右のページ を参照ください。
- 6) ゴム材料区分は、N:ニトリル F:ふっ素K:水素化ニトリルを示します。

スペーサ付きオイルシールの呼び番号例

(スペーサ幅は、5mm、10mmなどがあります。)

d_1 (3)	10)~(34	40)										
							シ ー 川	ノ 形 式	<u>></u>			
ϕ_I		ϕd_1										
:	主要寸法,mm	ı		YS			YSN		YS		YS	AN
d_1	D	b	N	F	K	N	F	K	N	F	N	F
310	370	25	•			•			●※			
	370	28							•			
315	355	20	•									
	360	20	•									
	365	20	•									
	375	25	•									
	375	28							•			
320	360	18	•			•						
	360	20	•									
	360	25	•		•	•						
	370	20	•									
	370	25	•									
	380	25	•			•			•			
	380	28							•	•		
320.68	371.48	25.4	•									
325	365	20										
	375	25	•									
330	370	18										
	370	20										
	370	25	•									
	380	25	•									
	390	25	•			•			_			
	390	28							•			
330.2	368.3	17.5	•*									
335	375	20	•									
	385	25										
226.2	395	28							•			
336.6	374.65	17.5	•*									
340	380	18				•	•					
	380	20		•								
	380	25										

$d_1 255 \sim (310)$

uı E	.55.~(510	<i>J</i>					s/ _ II	, #\ 	<u> </u>			
	, b						シ ー 川		J			
	ϕD	ϕd_1										
	主要寸法,mi	n		YS			YSN		Υ	SA	YS	AN
d_1	D	b	N	F	K	N	F	K	N	F	N	F
255	315	25	•									
265	305	18	•			•						
270	330	25	•									
280	320	18	•			•						
	330	20	•*									
	340	25	•			•						
290	330	18	•									
	340	20	•									
	350	25	•									
	350	28							•			
300	340	18	•	•		•	•					
	340	20	•									
	340	25	•									
	345	20	•									
	345	22	•									
	350	20	●※									
	350	25	•									
	350	29							•			
	360	25	•			•						
	360	28							•			
304	342.1	17.5	•*									
304.8	342.9	17.5	•*									
	355.6	20.6	•									
	355.6	25.4	•									
305	355	23	•									
	355	25	•									
310	350	18	•		·							
	350	19	•									
	350	20				•						
	360	20	•									
	360	25							•			

大形オイルシール

- 1) ●印のオイルシールは全て成形型をそろえています。
- 2) 断面図はオイルシールの代表的な形状を示します。
- 3) オイルシールの呼び番号は、形式記号+寸法番号(軸径・外径・幅)となります。 例: YS32036018 (320×360×18mm)
- 4) ●印横の※印は呼び番号に-1が付きます。

- 5) スペーサ付きのシールもあります。スペーサ 付きオイルシールの呼び番号は、右のページ を参照ください。
- 6) ゴム材料区分は、N:ニトリル F:ふっ素 K:水素化二トリルを示します。

スペーサ付きオイルシールの呼び番号例 (スペーサ幅は、5mm、10mmなどがあります。)

例1 YS 320 360 18 <u>D5</u> 例2 YS 320 360 18 <u>2D5</u> — スペーサ幅5mm — スペーサ幅5mm

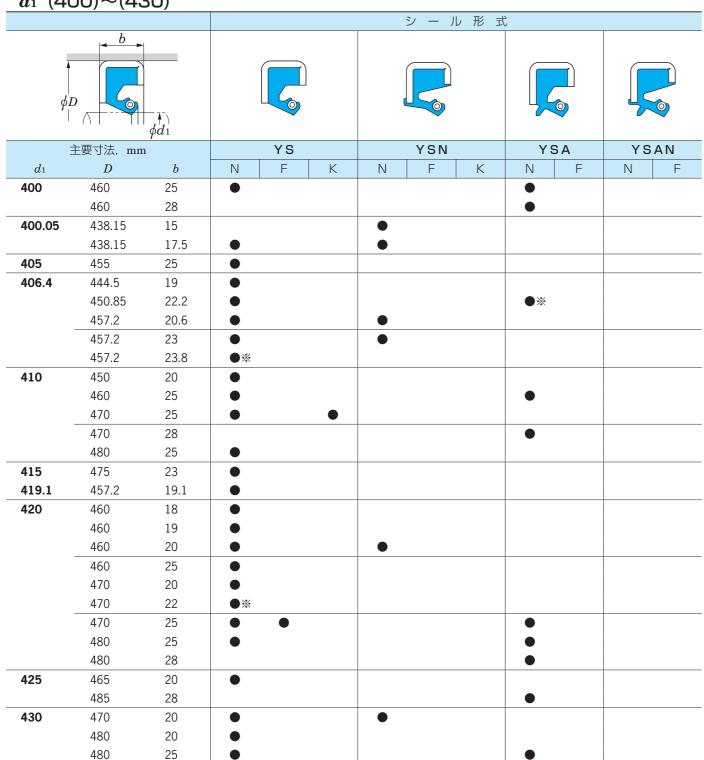
 d_1 (340)~(370)

d_1 (3	40)~(3	/0)										
							シ ー 川	レ 形 式	<u>.</u>			
φ		ϕd_1										(
	主要寸法, mr	n		YS			YSN		Υ	SA	YS	AN
d_1	D	b	N	F	K	N	F	K	N	F	N	F
340	384	20	•									
	390	20	•									
	390	25							•			
	400	25	•	•		•			•			
	400	28							•			
342.9	381	17.5	•									
	393.7	20.6	•									
	393.7	25.4	•									
350	390	16				•						
	390	18	•									
	390	20	•									
	400	17	•									
	400	25	•						•			
	410	25	•									
	410	28							•	•		
355	405	25	•						•			
	415	28							•			
355.6	406.4	20.6	●※									
	406.4	25.4	•									
360	400	17	•			•						
	400	18	•			•						
	400	20	•									
	400	25	•									
	410	25	•						•			
	420	25	•						•			
	420	28							•	•		
365	405	18	•									
370	410	18	•									
	410	20	•									
	410	25	•									
	415	20	•	•								

 d_1 (370)~(400)

							シーリ	レ形式	<u> </u>			
	<u>b</u>	1										
ϕ_{i}^{l}	D											6
'		 										
	主要寸法,mn	ϕd_1		YS			YSN		V	SA	VC	SAN
d_1	D D	<i>b</i>	N	F	K	N	F	K	N	F	N	F
370	420	20	•									
	420	25	•						•			
	430	25	•									
	430	28							•			
374.65	419.1	22.2	•									
375	420	18	•									
	420	20	•									
	435	28							•			
380	420	18	•									
	420	20	•									
	420	25	•									
	430	25	•									
	440	25	•									
	440	28							•			
381	419.1	17.5	•									
	431.8	20.6	●※									
	431.8	25.4	•									
385	425	18	•									
387.4	425.15	17.5	•*									
390	430	18	•									
	430	20	•									
	440	20	•									
	440	25	•						•			
	450	25	•						•			
	450	28							•			
393.7	431.8	19	•									
400	440	18										
	440	20										
	444	20	•									
	450	20										
	450	25										

大形オイルシール


- 1) ●印のオイルシールは全て成形型をそろえています。
- 2) 断面図はオイルシールの代表的な形状を示します。
- 3) オイルシールの呼び番号は、形式記号+寸法番号(軸径・外径・幅)となります。 例: YS32036018 (320×360×18mm)
- 4) ●印横の※印は呼び番号に-1が付きます。

- 5) スペーサ付きのシールもあります。スペーサ 付きオイルシールの呼び番号は、右のページ を参照ください。
- 6) ゴム材料区分は、N:ニトリル F:ふっ素 K:水素化二トリルを示します。

スペーサ付きオイルシールの呼び番号例 (スペーサ幅は、5mm、10mmなどがあります。)

例1 YS 320 360 18 D5 例2 YS 320 360 18 2D5 — スペーサ幅5mm — スペーサ幅5mm

d_1 (400)~(430)

d_1 (430)~467

							シーノ	レ 形 式	t			
	<i>b</i>											
9	ϕD	ϕd_1										
	主要寸法,mm	n .		YS	_		YSN		Y	SA	YS	AN
d_1	D	b	N	F	K	N	F	K	N	F	N	F
430	490	25	•			•						
	490	28							•			
431.8	469.9	19	•									
432	476	20	•									
438.2	476.25	19	•									
440	480	20	•			•						
	490	17	•									
	490	20	•									
	490	22	●※									
	490	25	•									
	500	25	•									
	500	28							•			
444.5	495.3	25.4	•									
450	490	19	•									
	490	20	•									
	500	20	•									
	500	25	•						•			
	510	25	•			•						
	510	28							•			
452.6	501.65	19.1	•*									
454	504.82	19	•									
457.2	508	19.1	•									
460	500	20	•			•						
	510	20	•									
	510	25	•									
	520	25	•	•		•			•			
	520	28							•			
463.6	501.65	19.1	•									
465	510	20	•									
	515	25							•			
467	510	20	•									

大形オイルシール

- 1) ●印のオイルシールは全て成形型をそろえています。
- 2) 断面図はオイルシールの代表的な形状を示します。
- 3) オイルシールの呼び番号は、形式記号+寸法番号(軸径・外径・幅)となります。 例: YS32036018 (320×360×18mm)
- 4) ●印横の※印は呼び番号に-1が付きます。

- 5) スペーサ付きのシールもあります。スペーサ 付きオイルシールの呼び番号は、右のページ を参照ください。
- 6) ゴム材料区分は、N:ニトリル F:ふっ素 K:水素化二トリルを示します。

スペーサ付きオイルシールの呼び番号例 (スペーサ幅は、5mm、10mmなどがあります。)

例1 YS 320 360 18 <u>D5</u> 例2 YS 320 360 18 <u>2D5</u> — スペーサ幅5mm — スペーサ幅5mm

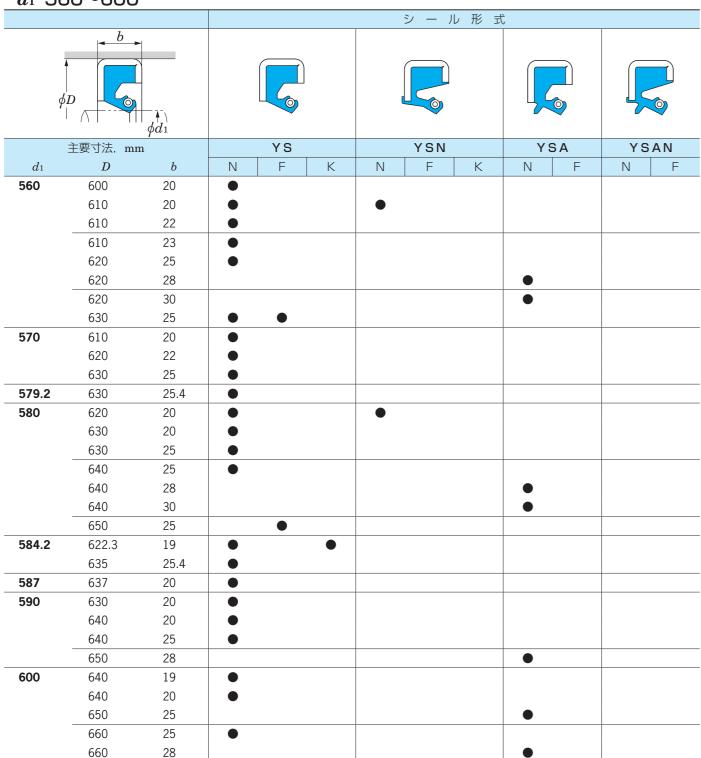
$d_1 = 46$	69.9~(5	20)								
							シール	レ 形 式	<u>.</u> J	
ϕ		ϕd_1								
	主要寸法,mn	n		YS			YSN		YSA	YSAN
d1	D	b	N	F	K	N	F	K	N F	N F
469.9	520.7	23	•							
	520.7	23.4	•							
470	510	20	•							
	520	18	•*							
	520	20	•			•	•			
	520	25							•	
	530	25	•						•	
	530	28							•	
480	520	20	•			•				
	530	20	•							
	530	22	•							
	530	25	•							
	540	25	•						•	
-	540	28							•	
482.6	520.7	19	•	•						
490	530	20	•							
	540	25	•						•	
	550	25	•							
495.3	546.1	23.8	•							
500	540	20	•							
	550	20								
	550	25	•							
	560	25	•						•	
	560	28							•	
510	550	20	•							
	560	25	•							
	570	28							•	
514	565	25								
514.4	565.15	22.2								
520	560	20								
	570	20								

d_1 (520)~558.8

							シーリ	レ 形 式	<u></u>			
		ϕd_1				I						
	主要寸法, mm		N.I.	YS	16	N.I.	YSN	17		SA		AN
<i>d</i> ₁	<i>D</i>	<i>b</i>	N	F	K	N	F	K	N	F	N	F
520	580	20										
	580	25	•									
E20.7	580	28	•						•			
520.7	558.8 571.5	19.1	• *									
E20	571.5	22.2	•									
530	570 580	20 20	•									
	580	22										
	590	28							•			
	600	25	•									
539.8	590.55	22	•*									
540	580	20	•									
0.10	580	25										
	590	20										
	590	25	•									
	600	25	•						•			
	600	28							•			
	610	25	•									
546.1	596.9	20.6	•									
	596.9	22.2	•									
550	590	20	•									
	600	20	•									
	600	25	•									
	610	23	•									
	610	25	•									
	610	28							•			
	620	25	•	•								
558	618	25	•									
558.8	596.9	19.1	•*									
	609.6	22.2	•									
	622.3	22.2	•									

大形オイルシール

- 1) ●印のオイルシールは全て成形型をそろえています。
- 2) 断面図はオイルシールの代表的な形状を示します。
- 3) オイルシールの呼び番号は、形式記号+寸法番号(軸径・外径・幅)となります。 例: YS32036018 (320×360×18mm)
- 4) ●印横の※印は呼び番号に-1が付きます。


- 5) スペーサ付きのシールもあります。スペーサ 付きオイルシールの呼び番号は、右のページ を参照ください。
- 6) ゴム材料区分は、N:ニトリル F:ふっ素K:水素化ニトリルを示します。

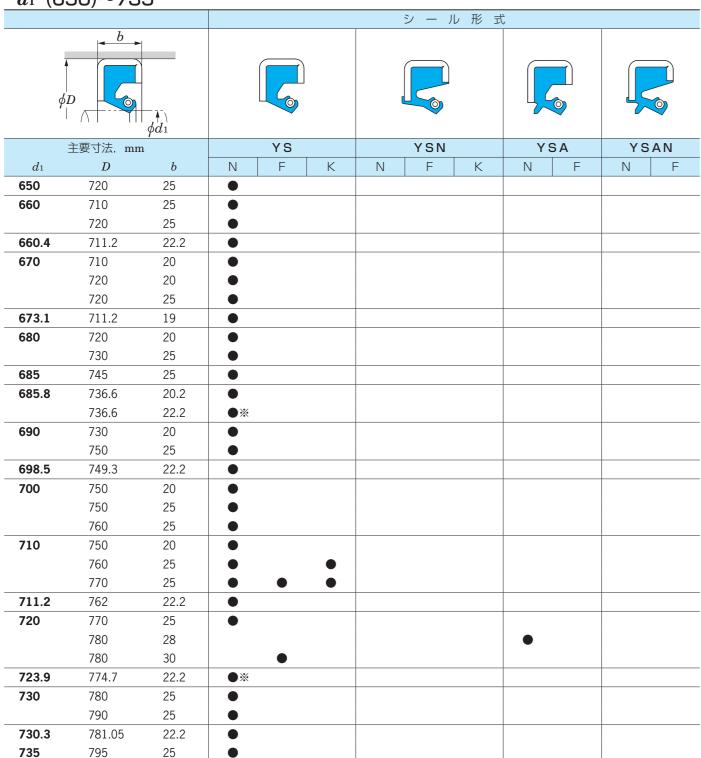
スペーサ付きオイルシールの呼び番号例

(スペーサ幅は、5mm、10mmなどがあります。)

$d_1 560\sim600$

d_1 609.6~(650)

							シー	ル形式	Ç			
	<i>b</i>	•										
1)							
,		1			J							
ϕ_{\parallel}	D	<u> </u>							7		7	
	/ / /	ϕd_1										
	主要寸法,mr	n		YS			YSN		Y	SA	YS	BAN
d_1	D	b	N	F	K	N	F	K	N	F	N	F
609.6	660.4	22.2	•							·		
610	660	25	•									
	670	23	•									
	670	25	•									
	670	28							•			
	670	30										
620	660	20	•									
	670	20	•									
	670	25	•									
	680	25	•									
	680	28							•			
	690	25	•									
622.3	673.1	22.2	•									
630	670	20	•									
	670	25	•									
	680	25	•									
	690	25	•									
	690	30	•									
	700	30							•			
635	673.1	19.1	•									
	685	25	•									
	695	25	•									
640	680	20	•									
	690	25	•									
	700	25	•									
	700	28							•			
647.7	698.5	22.2	•									
650	700	25	•									
	710	25	•		•							
	710	28							•			
	710	30		•								


大形オイルシール

- 1) ●印のオイルシールは全て成形型をそろえています。
- 2) 断面図はオイルシールの代表的な形状を示します。
- 3) オイルシールの呼び番号は、形式記号+寸法番号(軸径・外径・幅)となります。 例: YS32036018 (320×360×18mm)
- 4) ●印横の※印は呼び番号に-1が付きます。

- 5) スペーサ付きのシールもあります。スペーサ 付きオイルシールの呼び番号は、右のページ を参照ください。
- 6) ゴム材料区分は、N:ニトリル F:ふっ素K:水素化ニトリルを示します。

スペーサ付きオイルシールの呼び番号例 (スペーサ幅は、5mm、10mmなどがあります。)

d_1 (650)~735

d_1 736.6~(820)

							シーリ	レ 形 式	Ç			
	b	1										
ϕ	ϕ_D ϕ_{d_1}											
	主要寸法,mn	n	YS			YSN		Υ	SA	YS	SAN	
d_1	D	b	N	F	K	N	F	K	N	F	N	F
736.6	774.7	19	•		•					•		
	787.4	22.2	●※									
	812.8	41.3							•			
740	790	25	•									
	800	25	•									
750	800	25	•									
	810	25	•									
	810	28							•			
760	810	25	•									
	813	22				•						
	820	25	•									
	830	30					•					
762	825.5	22.4	•									
774.7	825.5	22.2	•									
	850.9	25.4	•									
780	830	25	•		•							
790	835	20				•						
	840	25	•									
	850	25	•*									
793.5	844.55	19	•									
800	850	22	•									
	850	25	•		•							
	860	25	•									
	870	25	•									
810	860	25	•									
	870	25	•									
	870	28							•			
	874	22	•									
820	870	25	•									
	880	25	•									
	880	28							•			

大形オイルシール

- 1) ●印のオイルシールは全て成形型をそろえています。
- 2) 断面図はオイルシールの代表的な形状を示します。
- 3) オイルシールの呼び番号は、形式記号+寸法番号(軸径・外径・幅)となります。 例: YS32036018 (320×360×18mm)
- 4) ●印横の※印は呼び番号に-1が付きます。

- 5) スペーサ付きのシールもあります。スペーサ 付きオイルシールの呼び番号は、右のページ を参照ください。
- 6) ゴム材料区分は、N:ニトリル F:ふっ素 K:水素化二トリルを示します。

スペーサ付きオイルシールの呼び番号例 (スペーサ幅は、5mm、10mmなどがあります。)

例1 YS 320 360 18 <u>D5</u> 例2 YS 320 360 18 <u>2D5</u> — スペーサ幅5mm — スペーサ幅5mm

d_1 (90	<i>d</i> ₁ (900)~1 016									
							シール形	式		
	<i>b</i>									
ϕ_{I}		ϕd_1								
	主要寸法,mm			YS			YSN	YSA	YSAN	
d_1	D	b	N	F	K	N	F K	N	F N F	
900	960	25	•							
914.4	977.9	25.4	•							
920	970	20	•							
	970	25	•							
927.1	977.9	22.2	•							
940	990	25	•							
	1 000	23	•							
	1 000	25	•							
950	1 000	23	•							
	1 000	25	•							
	1 000	30						•		
	1 010	25	•							
952.5	990.6	22.2				•				
	1 002.9	22.2	•							
	1 003.3	22.2	•							
960	1 020	25	•							
970	1 020	25	•							
	1 030	25	•*							
971.5	1 035.05	19.05	•							
971.6	1 035.05	25	•							
977.9	1 041.4	25	●※							
990	1 040	25	●※							
990.6	1 041.4	22.2	•							
1 000	1 050	22	•							
	1 050	23	•							
	1 050	25	•							
	1 050	30								
	1 060	25	•			_				
	1 100	20				•				
1 010	1 060	25			•					
1 016	1 066.8	22.2								

d_1 (820)~(900)

W1 (O	wi (525) (555)			シ ー ル 形 式										
φ	ϕ_D ϕ_{d1}													
	主要寸法,mn	n	YS			YSN		Y	SA	YS	YSAN			
d_1	D	b	N	F	K	N	F	K	N	F	N	F		
820	884	25		•										
825.5	876.3	22.2	•											
830	880	25	•											
	900	25	•											
838.2	879.5	19				•								
	889	22.2	•											
840	890	22	•											
	890	25	•											
	910	25	•											
849	900	25									•			
850	900	25	•	•										
	910	25	•											
850.9	914.4	22.2	•											
860	910	25	•											
	920	23	•											
	920	25	•											
864	928	22	•											
870	920	25	•			•								
876.3	927.1	22.2	•											
880	930	25	•											
	930	30							•					
	940	25	•											
	940	28							•					
882.7	933.45	22.2	•											
889	939.8	20.6	•											
	952.5	22.2	•											
	952.5	25.4	•											
	965.2	25.4	•											
890	940	25	•											
	950	25	•											
900	950	25	•				•	•						

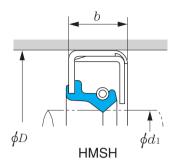
大形オイルシール

- 1) ●印のオイルシールは全て成形型をそろえています。
- 2) 断面図はオイルシールの代表的な形状を示します。
- 3) オイルシールの呼び番号は、形式記号+寸法番号(軸径・外径・幅)となります。例: YS32036018 (320×360×18mm)
- 4) ●印横の※印は呼び番号に-1が付きます。

- 5) スペーサ付きのシールもあります。スペーサ 付きオイルシールの呼び番号は、右のページ を参照ください。
- 6) ゴム材料区分は、N:ニトリル F:ふっ素K:水素化ニトリルを示します。

スペーサ付きオイルシールの呼び番号例 (スペーサ幅は、5mm、10mmなどがあります。)

*d*₁ 1 020∼1 640


				シール形式								
ļ	<i>b</i>											
ϕ	D											
		$\phi_{d_1}^{\uparrow}$	_									
	主要寸法,mn	1		YS			YSN		Y	SA	YS	AN
d_1	D	b	N	F	K	N	F	K	N	F	N	F
1 020	1 070	25	•									
1 030	1 070	25	•									
1 050	1 110	25	•									
1 070	1 120	25	•									
	1 130	25	•									
1 079.5	1 143	22.2	•									
1 080	1 130	25	•*									
1 090	1 140	25	•									
	1 150	25	•									
1 092.2	1 155.7	25.4	•									
1 104.9	1 155.7	22.2	•									
1 105	1 155	15				•						
1 110	1 160	25	•									
1 117.6	1 181.1	22.2	•									
1 130	1 180	25	•									
1 136	1 186	25	•									
1 140	1 200	25	•									
1 200	1 264	25	•									
1 210	1 270	25	•									
1 320	1 380	30							•	•		
1 340	1 390	25	•									
1 360	1 410	25	•									
1 400	1 460	25	•									
1 460	1 510	25	•									
1 480	1 530.8	22.2	•									
1 498.6	1 549.4	22.2	•						•			
1 500	1 550	25	•									
1 640	1 690	25	●※									

形式 HMSH

JTEKT

補強環付きオイルシール

備考)ゴム材料はすべて、ニトリルゴムになります。

d_1 4	.1~(2	(00	
主	要寸法,m	ım	
d_1	D	b	呼 び 番 号
41	53	7	HMSH 41 53 7
80	100	10	HMSH 80 100 10
95	120	13	HMSH 95 120 13
115	145	14	HMSH 115 145 14
125	155	14	HMSH 125 155 14
130	150	10	HMSH 130 150 10
	170	16	HMSH 130 170 16
140	170	14	HMSH 140 170 14
155	190	14	HMSH 155 190 14
160	190	14	HMSH 160 190 14
	190	16	HMSH 160 190 16
165	200	15	HMSH 165 200 15
170	200	16	HMSH 170 200 16
	205	16	HMSH 170 205 16
	225	20	HMSH 170 225 20
175	220	15	HMSH 175 220 15
	230	20	HMSH 175 230 20
180	210	14	HMSH 180 210 14
	210	16	HMSH 180 210 16
	215	16	HMSH 180 215 16
	215	18	HMSH 180 215 18
	220	15	HMSH 180 220 15
	220	18	HMSH 180 220 18
	225	18	HMSH 180 225 18
	235	20	HMSH 180 235 20
190	220	12	HMSH 190 220 12
	220	14	HMSH 190 220 14
	220	15	HMSH 190 220 15
	225	14	HMSH 190 225 14
	225	16	HMSH 190 225 16
	225	18	HMSH 190 225 18
	245	20	HMSH 190 245 20
	245	22	HMSH 190 245 22
	245	25	HMSH 190 245 25
195	230	16	HMSH 195 230 16
	250	20	HMSH 195 250 20
198	255	22	HMSH 198 255 22
200	230	15	HMSH 200 230 15
	235	16	HMSH 200 235 16

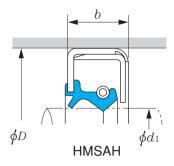
 d_1 (200)~(240)

主	要寸法,m	ım	
d_1	D	b	呼び番号
200	240	14	HMSH 200 240 14
	240	20	HMSH 200 240 20
205	230	16	HMSH 205 230 16
	235	15	HMSH 205 235 15
	235	16	HMSH 205 235 16
	260	23	HMSH 205 260 23
210	240	12	HMSH 210 240 12
	240	15	HMSH 210 240 15
	250	16	HMSH 210 250 16
	250	18	HMSH 210 250 18
	265	23	HMSH 210 265 23
212	245	16	HMSH 212 245 16
215	240	12	HMSH 215 240 12
	245	14	HMSH 215 245 14
	245	15	HMSH 215 245 15
	250	16	HMSH 215 250 16
	270	23	HMSH 215 270 23
220	245	14	HMSH 220 245 14
	250	15	HMSH 220 250 15
	255	16	HMSH 220 255 16
	260	15	HMSH 220 260 15
	260	16	HMSH 220 260 16
	275	23	HMSH 220 275 23
224	260	18	HMSH 224 260 18
225	255	13	HMSH 225 255 13
	280	23	HMSH 225 280 23
230	255	15	HMSH 230 255 15
	255	16	HMSH 230 255 16
	260	15	HMSH 230 260 15
	260	20	HMSH 230 260 20
	285	23	HMSH 230 285 23
235	290	23	HMSH 235 290 23
236	270	16	HMSH 236 270 16
240	270	15	HMSH 240 270 15
	270	16	HMSH 240 270 16
	273	16	HMSH 240 273 16
	275	18	HMSH 240 275 18
	280	16	HMSH 240 280 16
	280	19	HMSH 240 280 19

 d_1 (240)~340

	240)-		
主	要寸法,m	ım	
d_1	D	b	呼び番号
240	300	25	HMSH 240 300 25
245	275	13	HMSH 245 275 13
	305	25	HMSH 245 305 25
	305	28	HMSH 245 305 28
250	280	15	HMSH 250 280 15
	280	18	HMSH 250 280 18
	285	16	HMSH 250 285 16
	290	16	HMSH 250 290 16
	310	25	HMSH 250 310 25
260	280	16	HMSH 260 280 16
	290	16	HMSH 260 290 16
	300	18	HMSH 260 300 18
	300	20	HMSH 260 300 20
	300	22	HMSH 260 300 22
	320	25	HMSH 260 320 25
265	290	16	HMSH 265 290 16
	305	18	HMSH 265 305 18
	325	25	HMSH 265 325 25
270	300	15	HMSH 270 300 15
	310	18	HMSH 270 310 18
	313	20	HMSH 270 313 20
	330	25	HMSH 270 330 25
275	310	16	HMSH 275 310 16
280	305	12	HMSH 280 305 12
	310	16	HMSH 280 310 16
	320	18	HMSH 280 320 18
	320	20	HMSH 280 320 20
290	320	25	HMSH 290 320 25
298	337	20	HMSH 298 337 20
300	330	15	HMSH 300 330 15
000	332	16	HMSH 300 332 16
	335	18	HMSH 300 335 18
	340	16	HMSH 300 340 16
	340	18	HMSH 300 340 18
	340	22	HMSH 300 340 22
	345	22	HMSH 300 345 22
	360	25	HMSH 300 360 25
	372	16	HMSH 300 372 16
310	340	15	HMSH 310 340 15
	340	22	HMSH 310 340 22
	350	18	HMSH 310 350 18
320	360	18	HMSH 320 360 18
	380	25	HMSH 320 380 25
330	360	18	HMSH 330 360 18
200	370	18	HMSH 330 370 18
	380	18	HMSH 330 380 18
	390	25	HMSH 330 390 25
	390	28	HMSH 330 390 28
340	372	16	
340			HMSH 340 372 16
	380	18	HMSH 340 380 18

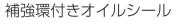
d₁ 350~440

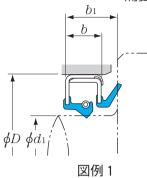

主	要寸法,r	nm	
d_1	D	b	呼び番号
350	390	18	HMSH 350 390 18
355	390	15	HMSH 355 390 15
370	410	15	HMSH 370 410 15
	410	18	HMSH 370 410 18
380	440	25	HMSH 380 440 25
440	490	16.5	HMSH 440 490 16.5

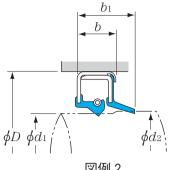
形式 HMSAH

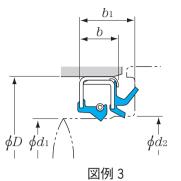
補強環付きオイルシール

備考)ゴム材料はすべて、ニトリルゴムになります。


*d*₁ 68~340


主	要寸法,m	ım	
d1	D	b	呼 び 番 号
68	88	10	HMSAH 68 88 10
	90	10	HMSAH 68 90 10
70	90	10	HMSAH 70 90 10
90	118	12	HMSAH 90 118 12
	135	15	HMSAH 90 135 15
140	170	14	HMSAH 140 170 14
160	190	16	HMSAH 160 190 16
164	194	16	HMSAH 164 194 16
180	215	18	HMSAH 180 215 18
190	225	18	HMSAH 190 225 18
200	235	18	HMSAH 200 235 18
205	260	23	HMSAH 205 260 23
210	265	23	HMSAH 210 265 23
220	255	18	HMSAH 220 255 18
240	270	16	HMSAH 240 270 16
	275	18	HMSAH 240 275 18
	300	28	HMSAH 240 300 28
250	285	15	HMSAH 250 285 15
	310	28	HMSAH 250 310 28
260	290	16	HMSAH 260 290 16
	290	18	HMSAH 260 290 18
	300	22	HMSAH 260 300 22
270	330	25	HMSAH 270 330 25
	330	28	HMSAH 270 330 28
280	320	18	HMSAH 280 320 18
	320	22	HMSAH 280 320 22
	340	28	HMSAH 280 340 28
300	340	22	HMSAH 300 340 22
310	340	20	HMSAH 310 340 20
	350	18	HMSAH 310 350 18
340	400	25	HMSAH 340 400 25



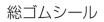

形式 HMSH...J

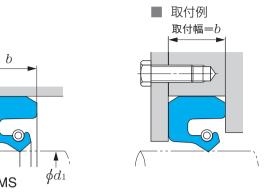
備考 1) ゴム材料はすべて、ニトリルゴムになります。

d1 117~280

2) 呼び番号によってはドレイン(水抜き)が付くものがありますので問い合せください。

	3	主要寸法,mr	n			
d_1	d_2	D	b	b_1	呼び番号	図例
117	_	140	10	14	HMSH 117 140 10-14 J	1
130	132	150	10	14	HMSH 130 150 10-14 J	3
134	_	160	11	17	HMSH 134 160 11-17 J	1
137	139	160	11	14	HMSH 137 160 11-14 J	3
145	_	165	10	15	HMSH 145 165 10-15 J	1
155	158	180	13	17	HMSH 155 180 13-17 J	3
159	_	183	12	18	HMSH 159 183 12-18 J	1
166	_	190	12	18	HMSH 166 190 12-18 J	1
170	_	200	16	25	HMSH 170 200 16-25 J	1
174	177	200	14	19	HMSH 174 200 14-19 J	3
175	_	200	10	15.5	HMSH 175 200 10-15.5 J	1
180	_	220	16	25	HMSH 180 220 16-25 J	1
190	_	220	12	18	HMSH 190 220 12-18 J	1
	193	220	14	20	HMSH 190 220 14-20 J	3
200	203	230	14	20	HMSH 200 230 14-20 J	3
		235	16	23	HMSH 200 235 16-23 J	1
205	_	235	15	22	HMSH 205 235 15-22 J	1
210		240	12	21	HMSH 210 240 12-21 J	1
215	_	240	12	18	HMSH 215 240 12-18 J	1
	218	245	14	22	HMSH 215 245 14-22 J	3
220	_	245	13	21	HMSH 220 245 13-21 J	1
		260	16	23	HMSH 220 260 16-23 J	1
225	_	255	13	21	HMSH 225 255 13-21 J	1
	228	260	14	20	HMSH 225 260 14-20 J	3
230	_	260	15	23	HMSH 230 260 15-23 J	1
240	240	270	16	22	HMSH 240 270 16-22 J	2
	243	275	16	24	HMSH 240 275 16-24 J	3
245	_	275	13	21	HMSH 245 275 13-21 J	1
250	_	280	16	23	HMSH 250 280 16-23 J	1
	_	280	16	25	HMSH 250 280 16-25 J	1
254	_	285	11.5	18.4	HMSH 254 285 11.5-18.4 J	1
260	263	290	14	20	HMSH 260 290 14-20 J	3
270	_	300	16	25	HMSH 270 300 16-25 J	1
280	_	316	18	25	HMSH 280 316 18-25 J	1
	384	320	20	28	HMSH 280 320 20-28 J	3


d₁ 300~405


	Ē	主要寸法,mn	n			
d1	d_2	D	b	b_1	呼 び 番 号	図例
300	300	340	20	29	HMSH 300 340 20-29 J	3
310	_	350	18	28	HMSH 310 350 18-28 J	1
	313	350	20	28	HMSH 310 350 20-28 J	3
320	_	360	18	25	HMSH 320 360 18-25 J	1
330	_	380	18	25	HMSH 330 380 18-25 J	1
340	_	380	18	24	HMSH 340 380 18-24 J	1
	_	380	16	21.5	HMSH 340 380 16-21.5 J	1
	343	380	18	26	HMSH 340 380 18-26 J	3
350	_	390	18	25	HMSH 350 390 18-25 J	1
370	_	410	18	25	HMSH 370 410 18-25 J	1
375	378	420	20	28	HMSH 375 420 20-28 J	3
405	_	435	14.5	19.2	HMSH 405 435 14.5-19.2 J	1

形式 MS

- 備考 1) ゴム材料はすべて、ニトリルゴム になります。
 - 2)取付幅の寸法許容差は下表のとおりにしてください。

取付幅許容差

(単位:mm)

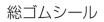
取付幅	=b	幅許容差
	6 以下	$-0.1 \sim -0.2$
6 を超え	10 以下	$-0.1 \sim -0.3$
10 を超え	18 以下	$-0.1 \sim -0.4$
18 を超え	30 以下	$-0.1 \sim -0.5$

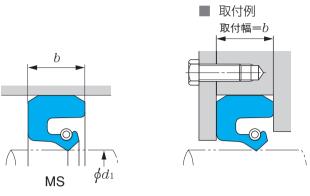
<i>d</i> ₁ 35~(110)								
主	要寸法,m	ım						
d_1	D	b	呼 び 番 号					
35	59	12	MS 35 59 12					
	60	12	MS 35 60 12					
40	67	14	MS 40 67 14					
45	72	14	MS 45 72 14					
50	72	12	MS 50 72 12					
	77	14	MS 50 77 14					
	80	14	MS 50 80 14					
55	78	12	MS 55 78 12					
	85	14	MS 55 85 14					
60	82	12	MS 60 82 12					
	84	13	MS 60 84 13					
65	92	14	MS 65 92 14					
	95	14	MS 65 95 14					
	95	15	MS 65 95 15					
	95	16	MS 65 95 16					
75	100	13	MS 75 100 13					
	100	16	MS 75 100 16					
	105	16	MS 75 105 16					
80	105	13	MS 80 105 13					
	110	16	MS 80 110 16					
85	110	13	MS 85 110 13					
	115	16	MS 85 115 16					
90	115	13	MS 90 115 13					
	120	16	MS 90 120 16					
95	120	10	MS 95 120 10					
	125	16	MS 95 125 16					
100	120	13	MS 100 120 13					
	130	16	MS 100 130 16					
	130	18	MS 100 130 18					
	133	18	MS 100 133 18					
	135	15	MS 100 135 15					
105	140	13	MS 105 140 13					
108	134	16	MS 108 134 16					
110	135	8	MS 110 135 8					
	140	12	MS 110 140 12					

d_1 (110) \sim (180)

主	要寸法, n	ım	
			呼び番号
d_1	D	b	
110	140	14	MS 110 140 14
	143	18	MS 110 143 18
	145	18	MS 110 145 18
115	145	18	MS 115 145 18
	148	18	MS 115 148 18
	150	18	MS 115 150 18
120	150	14	MS 120 150 14
	150	15	MS 120 150 15
	150	18	MS 120 150 18
	155	18	MS 120 155 18
125	155	14	MS 125 155 14
	158	18	MS 125 158 18
	160	18	MS 125 160 18
130	163	18	MS 130 163 18
135	168	18	MS 135 168 18
	170	18	MS 135 170 18
140	170	14	MS 140 170 14
	173	18	MS 140 173 18
	175	18	MS 140 175 18
145	175	14	MS 145 175 14
	178	18	MS 145 178 18
	180	18	MS 145 180 18
150	180	14	MS 150 180 14
	185	18	MS 150 185 18
	186	20	MS 150 186 20
155	191	20	MS 155 191 20
	200	20	MS 155 200 20
160	195	18	MS 160 195 18
	196	20	MS 160 196 20
165	201	20	MS 165 201 20
170	203	13	MS 170 203 13
	205	16	MS 170 205 16
175	211	20	MS 175 211 20
180	215	16	MS 180 215 16
	216	20	MS 180 216 20

d_1 (180)~260


d_1 265~360


	180)^			<u>205~</u>			
主	要寸法,m	ım		主	要寸法,m	ım	
d_1	D	b	呼 び 番 号	d_1	D	b	呼 び 番 号
180	220	20	MS 180 220 20	265	310	22	MS 265 310 22
185	221	20	MS 185 221 20	270	320	24	MS 270 320 24
188	230	20	MS 188 230 20	275	320	24	MS 275 320 24
190	220	12	MS 190 220 12	280	315	20	MS 280 315 20
	226	20	MS 190 226 20		325	22	MS 280 325 22
	230	20	MS 190 230 20		325	24	MS 280 325 24
195	230	19	MS 195 230 19		340	25	MS 280 340 25
	231	20	MS 195 231 20	290	335	24	MS 290 335 24
200	230	16	MS 200 230 16		350	25	MS 290 350 25
	239	22	MS 200 239 22	300	340	20	MS 300 340 20
	240	20	MS 200 240 20		344	20	MS 300 344 20
205	250	20	MS 205 250 20		345	22	MS 300 345 22
208	248	16	MS 208 248 16		350	25	MS 300 350 25
	250	20	MS 208 250 20	310	350	20	MS 310 350 20
215	254	22	MS 215 254 22		355	24	MS 310 355 24
220	260	20	MS 220 260 20		360	25	MS 310 360 25
	260	22	MS 220 260 22	315	360	20	MS 315 360 20
224	260	16	MS 224 260 16		360	25	MS 315 360 25
225	260	18	MS 225 260 18	320	370	20	MS 320 370 20
	265	20	MS 225 265 20		370	25	MS 320 370 25
230	260	20	MS 230 260 20		380	25	MS 320 380 25
	261	10	MS 230 261 10		380	27	MS 320 380 27
	269	22	MS 230 269 22	325	375	25	MS 325 375 25
	270	20	MS 230 270 20	330	380	24	MS 330 380 24
	285	23	MS 230 285 23		380	25	MS 330 380 25
231	270	20	MS 231 270 20	340	384	20	MS 340 384 20
235	275	20	MS 235 275 20		390	25	MS 340 390 25
	275	22	MS 235 275 22		400	25	MS 340 400 25
238	275	20	MS 238 275 20	350	390	25	MS 350 390 25
240	275	16	MS 240 275 16		400	20	MS 350 400 20
250	290	20	MS 250 290 20		400	21	MS 350 400 21
	295	24	MS 250 295 24		400	25	MS 350 400 25
255	300	24	MS 255 300 24	355	405	25	MS 355 405 25
260	305	22	MS 260 305 22	360	404	20	MS 360 404 20
	315	24	MS 260 315 24		405	25	MS 360 405 25

特 殊 d1 370~2 538

形式 MS

- 備考 1) ゴム材料はすべて、ニトリルゴム になります。
 - 2)取付幅の寸法許容差は下表のとおりにしてください。

取付幅許容差

(単位:mm)

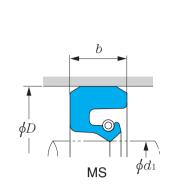
取付幅	≣ =b	幅許容差
	6 以下	$-0.1 \sim -0.2$
6 を超え	10 以下	$-0.1 \sim -0.3$
10 を超え	18 以下	$-0.1 \sim -0.4$
18 を超え	30 以下	$-0.1 \sim -0.5$

d_1 3	370~	510	
主	要寸法,r	nm	
d_1	D	b	呼び番号
370	420	24	MS 370 420 24
	420	25	MS 370 420 25
	430	25	MS 370 430 25
380	420	20	MS 380 420 20
	428	20	MS 380 428 20
	430	25	MS 380 430 25
	440	25	MS 380 440 25
384	428	20	MS 384 428 20
390	435	25	MS 390 435 25
	450	25	MS 390 450 25
400	450	25	MS 400 450 25
410	460	25	MS 410 460 25
	470	25	MS 410 470 25
420	470	25	MS 420 470 25
	470	30	MS 420 470 30
	480	25	MS 420 480 25
430	480	25	MS 430 480 25
432	476	20	MS 432 476 20
440	490	25	MS 440 490 25
450	500	25	MS 450 500 25
457	508	21	MS 457 508 21
460	510	25	MS 460 510 25
	515	28	MS 460 515 28
	520	25	MS 460 520 25
465	515	25	MS 465 515 25
475	525	25	MS 475 525 25
480	530	30	MS 480 530 30
	540	25	MS 480 540 25
490	540	25	MS 490 540 25
495	545	25	MS 495 545 25
500	550	20	MS 500 550 20
	550	25	MS 500 550 25
	560	25	MS 500 560 25
	560	30	MS 500 560 30
510	560	25	MS 510 560 25

$d_1 515 \sim (650)$

\underline{a}_1	515	(050)	
	主要寸法,	mm	
d_1	D	b	呼び番号
515	5 565	25	MS 515 565 25
520	570	24	MS 520 570 24
	570	25	MS 520 570 25
	570	30	MS 520 570 30
	580	25	MS 520 580 25
525	5 575	22	MS 525 575 22
	575	25	MS 525 575 25
540	590	25	MS 540 590 25
	590	30	MS 540 590 30
550	600	25	MS 550 600 25
	600	30	MS 550 600 30
	610	25	MS 550 610 25
560	610	20	MS 560 610 20
	610	30	MS 560 610 30
	620	25	MS 560 620 25
	620	30	MS 560 620 30
570	620	25	MS 570 620 25
	630	30	MS 570 630 30
580	630	25	MS 580 630 25
	630	30	MS 580 630 30
585	635	22	MS 585 635 22
600	647	25	MS 600 647 25
	650	30	MS 600 650 30
	660	25	MS 600 660 25
	670	30	MS 600 670 30
610	660	25	MS 610 660 25
	660	30	MS 610 660 30
	670	30	MS 610 670 30
630	680	25	MS 630 680 25
	680	30	MS 630 680 30
	700	30	MS 630 700 30
635	5 705	30	MS 635 705 30
650	700	30	MS 650 700 30
	705	19	MS 650 705 19
	710	30	MS 650 710 30

d_1 (650) \sim (1 040)


d_1 (1 040)~2 538

_	WI (555)	(1 C	7-10)	<i>a</i> ₁ (10+0) ≥ 000				
	主	要寸法,m	m		主	要寸法,m	m		
	d_1	D	b	呼 び 番 号	d1	D	b	呼び番号	
	650	720	30	MS 650 720 30	1 040	1 110	30	MS 1040 1110 30	
	670	720	25	MS 670 720 25	1 045	1 095	25	MS 1045 1095 25	
	675	725	30	MS 675 725 30	1 090	1 137	25	MS 1090 1137 25	
	680	730	30	MS 680 730 30	1 100	1 150	30	MS 1100 1150 30	
		740	30	MS 680 740 30		1 157	25	MS 1100 1157 25	
	690	750	30	MS 690 750 30		1 170	30	MS 1100 1170 30	
	695	765	30	MS 695 765 30	1 110	1 157	25	MS 1110 1157 25	
	700	770	30	MS 700 770 30	1 170	1 217	25	MS 1170 1217 25	
	710	760	25	MS 710 760 25	1 200	1 250	24	MS 1200 1250 24	
		770	30	MS 710 770 30		1 250	30	MS 1200 1250 30	
_	730	800	30	MS 730 800 30		1 270	30	MS 1200 1270 30	
	750	800	30	MS 750 800 30	1 210	1 267	25	MS 1210 1267 25	
		820	30	MS 750 820 30	1 220	1 267	25	MS 1220 1267 25	
	760	820	25	MS 760 820 25	1 230	1 290	30	MS 1230 1290 30	
	770	817	25	MS 770 817 25	1 310	1 357	25	MS 1310 1357 25	
_		830	30	MS 770 830 30	1 390	1 450	30	MS 1390 1450 30	
	780	840	30	MS 780 840 30	1 400	1 456	25	MS 1400 1456 25	
	790	850	30	MS 790 850 30		1 460	30	MS 1400 1460 30	
	800	860	30	MS 800 860 30	1 450	1 497	25	MS 1450 1497 25	
_		870	30	MS 800 870 30	1 470	1 517	25	MS 1470 1517 25	
	810	857	25	MS 810 857 25	1 500	1 550	25	MS 1500 1550 25	
	820	890	30	MS 820 890 30	1 526	1 582	25	MS 1526 1582 25	
_	826	876	30	MS 826 876 30	1 530	1 590	30	MS 1530 1590 30	
	830	900	30	MS 830 900 30	1 550	1 606	25	MS 1550 1606 25	
_	870	940	30	MS 870 940 30	1 580	1 640	30	MS 1580 1640 30	
	900	950	25	MS 900 950 25	1 650	1 700	30	MS 1650 1700 30	
_		960	30	MS 900 960 30	1 734	1 790	25	MS 1734 1790 25	
	920	990	30	MS 920 990 30	1 760	1 820	30	MS 1760 1820 30	
	930	1 000	30	MS 930 1000 30	1 880	1 940	30	MS 1880 1940 30	
_	950	1 010	30	MS 950 1010 30	1 940	1 996	25	MS 1940 1996 25	
	960	1 020	25	MS 960 1020 25	2 000	2 060	30	MS 2000 2060 30	
	1 000	1 050	30	MS 1000 1050 30	2 150	2 206	25	MS 2150 2206 25	
_	1 005	1 052	25	MS 1005 1052 25	2 380	2 436	25	MS 2380 2436 25	
_	1 030	1 080	30	MS 1030 1080 30	2 420	2 476	25	MS 2420 2476 25	
	1 040	1 087	25	MS 1040 1087 25	2 538	2 594	25	MS 2538 2594 25	

形式 MS

*d*₁ 2 915~3 530

主	要寸法,m	m	
d_1	D	b	呼 び 番 号
2 915	2 970	25	MS 2915 2970 25
3 530	3 585	25	MS 3530 3585 25

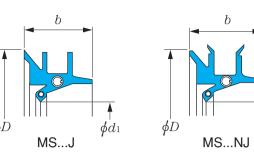
備考 1) ゴム材料はすべて、ニトリルゴム になります。

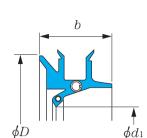
2)取付幅の寸法許容差は下表のとおりにしてください。

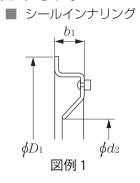
取付幅許容	萿
-------	---

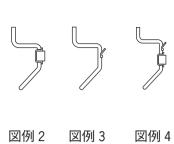
(単位:mm)

取付幅	$\equiv b$	幅許容差
	6 以下	$-0.1 \sim -0.2$
6 を超え	10 以下	$-0.1 \sim -0.3$
10 を超え	18 以下	$-0.1 \sim -0.4$
18 を超え	30 以下	$-0.1 \sim -0.5$

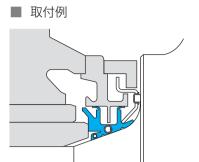



形式 MS...J MS...NJ H...JM H...PJ


■ モーゴイルシール


*d*₁ 167~936

モーゴイルシール シールインナリング

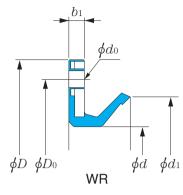


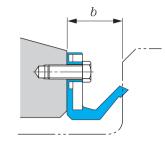
備考 ゴム材料は、すべてニトリルゴムになります。

注1)特殊形状記号 Bはスチールバンド付き、Wはワイヤ付きを表わします。

		モーゴィ	イルシール	シールインナリング					
主	要寸法,mi	m		主	要寸法,mi	m			
d_1	D	b	呼び番号)	d_2	D_1	<i>b</i> 1	呼び番号	図例	
167	219	41	MS 10 J	194	238	16	H 10 J	1	
236	295	49	MS 14 J	270	327	17.5	H 14 J	1	
275	346	51	MS 16 J	308	372	21.5	H 16 J	1	
323	402	54	MS 18 J	349	421	18	H 18 J	1	
369	459	60	MS 21 J MS 21 JBW	406	490	19	H 21 J	1	
423	531	72	MS 24 J	475	567	27	H 24 J	1	
677	798	84	MS 38 J MS 38 JB MS 38 NJBW	737	883	32	H 38 J	1	
713	834	84	MS 40 J	772	940	36.5	H 40 J	1	
754	907	95	MS 42 J	822	988	38	H 42 J H 42 JM	1 2	
786	939	95	MS 44 J MS 44 JB MS 44 NJBW	854	1 029	38	H 44 J H 44 JM H 44 PJ	1 2 3	
825	977	95	MS 46 J	892	1 061	38	H 46 J H 46 JM	1 2	
			MS 46 NJBW	892	1 061	45	H 46 NJM	2	
866	1 018	95	MS 48 J MS 48 JB MS 48 JW MS 48 NJBW	933	1 124	44.5	H 48 J H 48 JM	1 2	
901	1 054	95	MS 50 J	968	1 162	44.5	H 50 J	1	
			MS 50 JB	968	1 162	44.5	H 50 J H 50 JM H 50 PJ HM 50 NJP	1 2 3	
936	1 089	95	MS 50 NJB, NJBW MS 52 J	1 003	1 200	48	H 52 JM	2	

$d_1 962 \sim 1593$


u_1	$a_1 \ 962 \sim 1593$								
		モーゴィ	′ルシール	シールインナリング					
主	主要寸法,mm			主	要寸法,m	m			
d_1	D	b	呼 び 番 号"	d_2	D_1	b_1	呼 び 番 号	図例	
962	1 109	92	MS 54 NJBW	1 038	1 225	44.5	H 54 NJP	3	
972	1 124	95	MS 54 J	1 038	1 238	44.5	H 54 J	2	
			MS 54 JB				H 54 JM	2	
							H 54 PJ	3	
				1 052	1 252	72	H 54 SNJP	3	
1 029	1 181	95	MS 56 SJ	1 098	1 289	38	H 56 J	1	
			MS 56 SJB				H 56 JM	2	
							H 56 PJ	3	
			MS 56 NJ	1 098	1 287	44	H 56 NJP	3	
			MS 56 NJBW	1 098	1 287	44	H 56 NJM	2	
							H 56 NJP	3	
1 099	1 245	92	MS 60 NJBW	1 175	1 340	45	H 60 NJP	3	
1 253	1 438	108	MS 68 J						
1 542	1 712	108	MS 80 J	1 630	1 885	55	H 80 JMP	4	
1 593	1 782	108	MS 82 J	1 680	1 955	82	H 82 JMP	4	
								•	


特 殊 d 195~1 595

形式 WR

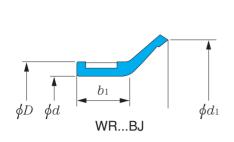
JTEKT

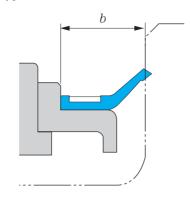
スケールシール

- 備考 1) ゴム材料はすべて、ニトリルゴム になります。
 - 2) 呼び番号によってはドレイン(水 抜き)が付くものがありますので 問い合せください。

d 195~760

<i>a</i> 100		主要寸法,mi	m				取付穴	
d	D	b	<i>b</i> 1	d1	呼び番号	D ₀ mm	d ₀ mm	穴数 (等配)
195	250	26	5	222	WR 195 250 26	234	9.5	6
200	250	26	5	229	WR 200 250 26	234	9.5	6
210	265	19	4	231	WR 210 265 19	245	9.5	8
240	300	26	5	269	WR 240 300 26	280	9.5	6
275	335	30	5	311	WR 275 335 30	315	9.5	8
280	340	25	5	304	WR 280 340 25	320	9.5	6
290	348	23	5	320	WR 290 348 23	330	9.5	8
	349	35	5	325	WR 290 N1	330	9.5	6
310	455	42.5	11	354	WR 310 455 42.5	400	17.5	特殊
318	380	30	8	350	WR 318 380 30	355	9.5	6
325	385	30	8	358	WR 325 385 30 J	360	9.5	6
330	400	35	5	370	WR 330 400 35	380	9.5	特殊
335	390	22	4.5	364	WR 335 N1	370	9.5	6
340	410	26	5	369	WR 340 410 26	390	9.5	6
	435	30	5	400	WR 340 435 30 J	415	9	8
350	414	35	5	386	WR 350 414 35	395	10	8
	450	25	5	396	WR 350 450 25	426	11	6
365	425	27.5	5	400	WR 365 425 27.5	405	9.5	12
380	455	35	8	421	WR 380 455 35	430	12	特殊
383	450	24	5	409	WR 383 450 24	430	9.5	12
420	480	26	5.5	444	WR 420 N1	462	10	8
424	482	22.5	5	453	WR 424 482 22.5 J	465	9.5	12
430	490	26	8	456	WR 430 490 26	472	10	12
435	489	25.4	7	460	WR 435 489 25.4	470	10	8
440	514	35	5	464	WR 440 514 35	490	12	8
	530	50	7	495	WR 440 530 50	500	14	8
448	510	28.4	6	485	WR 448 510 28.4	490	12	特殊
458	540	26	6	485	WR 458 N2	510	11.5	12
490	560	26	6	523	WR 490 N1	535	9.5	8
550	610	22	6	578	WR 550 610 22	590	9.5	8
580	650	51	8	632	WR 580 650 51	626	12	12
645	719	30	4.5	684	WR 645 N1	690	12	12
734	830	21.1	4	770	WR 734 830 21.1	800	12	8
740	840	55	9	786	WR 740 840 55	800	12	12
760	835	33	6	802	WR 760 N2	810	11	8


d 840~1 595


	Ė	要寸法,m	m				取付穴	
d	D	b	b_1	d1	呼び番号	D_0 mm	do mm	穴数 (等配)
840	915	35	8	876	WR 840 915 35	890	12	8
870	980	40	8	912	WR 870 980 40	940	14	12
890	1 000	50	8	948	WR 890 1000 50	950	18	12
992	1 064	26	6	1 020	WR 992 1064 26	1 040	12	特殊
1 000	1 108	38	8	1 040	WR 1000 1108 38	1 065	14	12
1 105	1 180	40	6	1 145	WR 1105 1180 40	1 156	14	16
1 200	1 270	38	8	1 242	WR 1200 1270 38	1 242	12	16
1 595	1 750	48	7.6	1 663	WR 1595 1750 48 J	1 700	14	20

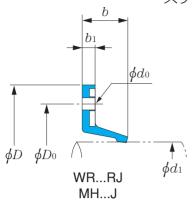
形式 WR...BJ

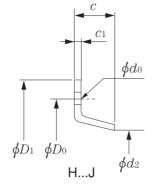
スケールシール

備考 1) ゴム材料はすべて、ニトリルゴム になります。

 呼び番号によってはドレイン(水 抜き)が付くものがありますので 問い合せください。

d 280~1 193.8


$a \ge 00^{\sim}$	1 133.0				
	主	要寸法	, mm		
d	d1	b	b_1	D	呼び番号
280	293	27	22.5	291	WR 280 288 27 BJ
326	341	38	23	336	WR 326 336 38 BJ
390	400	35	25	400	WR 390 400 35 BJ
395	405	38	25	405	WR 395 405 38 BJ
420	452	35	25	435	WR 420 435 35 BJ
445	461	35	25	461	WR 445 461 35 BJ
	478	35	25	460	WR 445 470 35 BJ
533	546	31.5	22	544	WR 533 543 31.5 BJ-1
595.3	611.3	29	22	613	WR 595.3 611.3 29 BJ
600	616	45	28	616	WR 600 616 45 BJ
750	792	45	25	766	WR 750 766 45 BJ
760	776	56.5	35	779	WR 760 776 56.5 BJ
800	854	56.5	35	819	WR 800 816 56.5 BJ
824	840	45	25	840	WR 824 840 45 BJ
1 000	1 049	50	32	1 016	WR 1000 1016 50 BJ
1 130	1 146	45	25	1 146	WR 1130 1146 45 BJ
1 193.8	1 231	40	20.5	1 209.8	WR 1193.8 1209.8 40 BJ

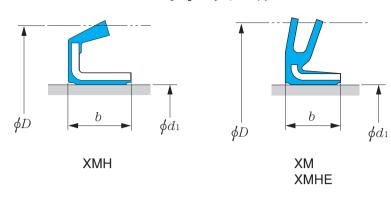


形式 WR...RJ MH...J H...J

スケールシール スケールカバー

- 備考 1) ゴム材料はすべて、ニトリルゴムになります。
 - 2) 呼び番号によってはドレイン (水抜き) が付くものがありますので問い合せください。

$d_1 210 \sim 1203$


	主要寸		203				スケールカバー			取付穴		
d_1	D	b	<i>b</i> 1	呼び番号		主要寸法	ŧ, mn	ı	III 7 % 7 K 🖂	D_0	d_0	穴数
a_1	D	U	01		d_2	D_1	c	C1	・・・・・呼び番号	mm	mm	(等配)
210	300	16	4	MH 210 300 4J	218	300	18	2	H 210 300 18 J	275	10	特殊
235	340	25	5	WR 235 340 25 RJ	_	_	_	_	_	300	11.5	5
300	380	26	6	MH 300 380 6 J	_	_	_	_	_	350	10	6
395	475	35	6	MH 395 475 6 J	409	475	33	5	H 395 475 33 J	455	10	特殊
425	490	16.8	5	MH 425 490 5 J	_	_	_	_	_	470	9.5	8
510	580	25	5	WR 510 580 25 RJ	524	580	30	3.2	H 510 580 30 J	562	9.5	8
550	624	35	8	MH 550 624 8 J	556	624	40	5	H 550 624 40 J	605	10	特殊
580	654	34	8	WR 580 654 34 RJ	589	654	40	5	H 580 654 40 J	635	10	12
584	685	25	5	WR 584 685 25 RJ	_	_	_	_	_	635	9	8
623	705	32	8	MH 623 705 8 J	635	705	30	5	H 623 705 30 J	685	12	特殊
690	770	35	8	MH 690 770 8 J	700	770	40	5	H 690 770 40 J	745	10	特殊
					695	770	55	5	H 690 770 55 J	745	10	特殊
696	780	32	8	MH 696 780 8 J	705	780	30	5	H 696 780 30 J	750	14	8
	780	37	8	WR 696 780 32 RJ	_	_	_	_	_	750	10	特殊
760	845	35	8	MH 760 845 8 J	-	_	_	_	_	820	10	12
805	885	35	8	MH 805 885 8 J	815	885	37	5	H 805 885 37 J	860	10	12
815	880	35	10	MH 815 880 8 J	828	880	27	5	H 815 880 27 J	865	9	12
850	925	30	8	MH 850 925 8 J	857	925	30	5	H 850 925 30 J	900	10	特殊
920	995	35	8	WR 920 995 35 RJ	-	_	_	_	_	970	10	12
970	1 070	35	8	WR 970 1070 35 RJ	_	_	_	_	_	1 040	12	12
990	1 090	40	8	WR 990 1090 40 RJ	-	_	_	_	_	1 060	14	12
1 010	1 110	35	6	WR 1010 1110 35 RJ	-	_	_	_	_	1 080	14	12
1 030	1 120	40	8	WR 1030 1120 40 RJ	_	_	_	_	_	1 090	15	12
1 117	1 230	41.5	10	WR 1117 1230 40 RJ	1 137	1 230	45	5	H 1117 1230 45 J	1 200	14	18
1 120	1 220	35	10	MH 1120 1220 10 J	1 132	1 220	33	5	H 1120 1220 33 J	1 190	14	12
1 193	1 290	35	10	MH 1193 1290 10 J	1 206	1 290	33	5	H 1193 1290 33 J	1 260	13	12
1 203	1 300	35	10	MH 1203 1300 10 J	1 215	1 300	33	5	H 1203 1300 33 J	1 270	13	特殊

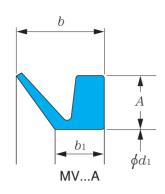
形式 XMH XM XMHE

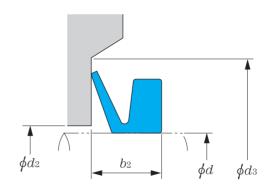
ウォータシール

- 備考 1) ●印のオイルシールは全て成形型 をそろえています。
 - 2) オイルシールの呼び番号は、形式 記号+寸法番号(軸径・外径・幅) となります。
 - 3) ゴム材料はすべて、ニトリルゴム になります。

$d_1 230 \sim 980$

$d_1 230 \sim 98$									
	主要寸法,mm			シール形式					
d_1	D	b	XMH	XM	XMHE				
230	260	15	•						
265	295	15	•						
274	304	13	•						
296	324	15	•						
345	375	15			•				
360	390	20	•						
	400	20			•				
365	405	12	•						
400	440	20			•				
420	470	20		•					
440	480	20		•					
465	505	25		•					
485	525	25		•					
490	530	20			•				
520	560	20			•				
560	600	25		•					
580	624	25		•					
610	660	25		•					
620	660	25			•				
680	720	25			•				
720	770	25			•				
740	810	45			•				
750	800	25			•				
760	820	38			•				
834	884	25			•				
850	900	30			•				
880	930	25			•				
905	955	25			•				
940	990	25			•				
980	1 030	25			•				


*d*₁ 1 040~1 460


	主要寸法,mm			シール形式	
d_1	D	b	XMH	XM	XMHE
1 040	1 090	25			•
1 080	1 130	25		•	
1 090	1 150	25		•	
1 110	1 160	25		•	
1 460	1 510	25			•

形式 MV...A

Vリング

d 38~875

備考)ゴム材料は、すべてニトリルゴムになります。

_d 38~875					37			
	使用軸径		主要寸	法, mm			取付寸法, mm	
呼び番号	<i>d</i> ,mm (以上-未満)	d_1	A	b	<i>b</i> 1	d ₂ (最大)	d3 (最小)	b_2
MV 40 A	38- 43	36	5	9	5.5	d+3	d+15	7.0±1.0
MV 60 A	58- 63	54	3	9	5.5	a + 3	a+15	7.0⊥1.0
MV 90 A	88- 93	81	6	11	6.8		d+18	9.0±1.2
MV 100 A	98-105	90		11	0.0		<i>a</i> + 10	9.0 ± 1.2
MV 120 A	115-125	108				d+4		
MV 140 A	135-145	126	7	12.8	7.9		d+21	10.5±1.5
MV 150 A	145-155	135						
MV 170 A	165-175	153	8	14.5	9	d+5	d+24	12.0±1.8
MV 199 A	195-210	180	0	14.5	9	<i>a</i> +5	<i>a</i> +24	12.0±1.0
MV 250 A	235-265	225						
MV 275 A	265-290	247						
MV 325 A	310-335	292						
MV 350 A	335-365	315						
MV 375 A	365-390	337						
MV 400 A	390-430	360						
MV 450 A	430-480	405	15	25	14.3	d+10	d+45	20.0±4.0
MV 500 A	480-530	450						
MV 550 A	530-580	495						
MV 650 A	630-665	600						
MV 750 A	745 – 785	705						
MV 800 A	785-830	745						
MV 850 A	830-875	785						

ロリング

2. 1 ロリングとバックアップリングの種類	94
(1) ロリングの種類	
(2) バックアップリングの種類	
2.2 0リングとバックアップリング呼び番号の構成	
(1) 0リングの呼び番号	95
(2) バックアップリングの呼び番号	
2.3 0リングの選定	96
(1) 0リングの材料	96
(2) 0リング材料の選定	
(3) 太さの選定	
2. 4 0リングの使用法	
(1) 密封のしくみ	
(2) バックアップリング	100
(3) 運動用Oリング	
(4) 円筒面固定用0リング	
(5) 平面固定用0リング	
(6) 真空フランジ用0リング	
(7)三角溝に取り付ける場合	
2.5 0リング取付溝の設計	
(1) つぶししろとつぶし率	
(2) 取付溝からのはみ出し	
(3) 取付溝の表面粗さ	
(4) 取付部の面取り	
(5) 取付部の材料および仕上げ方法	
2.6 0リングの保管および取扱い	
(1)保管	104
(2) 取扱い	
2.7 0リングの損傷例とその原因および対策	
2.8 0リング寸法編	107

■ 2.1 Oリングとバックアップリングの種類

2.1 ロリングとバックアップリングの種類

(1) ロリングの種類

Oリングは、コンパクトなシール部品として各種機械 に広く使用されています。

Oリングには、原則として運動用(パッキン)と固定

用(ガスケット)の区別があり、また耐油性などの特性によっても分類され、表2.1.1に示す規格などに規定されています。

表2.1.1 0リングの種類

用途		一般機器用				自動車用			航空機用	
規格	JIS B 2401			IBISO	3601	3601 JASO F 404		04	AS 568 AS 28775A	
区分	JIS記号	備考(タイプAデュロメータ硬さ)	旧JIS識別記号	備	考	材料の種類	備	考	備	考
材料別	NBR-70-1 NBR-90 NBR-70-2 EPDM-70 EPDM-90 VMQ-70 FKM-70 FKM-90 HNBR-70 HNBR-90 ACM-70 SBR-70*	耐鉱物油用 (A70) 耐鉱物油用 (A90) 耐ガソリン用 (A70) 耐動植物油・ブレーキ油用 (A70) 耐動植物油・ブレーキ油用 (A90) 耐熱用 (A70) 耐熱用 (A70) 耐熱用 (A90) 耐熱地・耐熱用 (A70) 耐鉱物油・耐熱用 (A90) 耐鉱物油・耐熱用 (A90) 耐熱・耐鉱物油用 (A70)	1種A 1種B 2種 3種 - 4種C 4種D 3種	鉱物系作 材料: JIS NBI		1種A 2種 3種 4種C 4種D 4種E 5種	耐熱用 耐熱用 耐熱用	ン用		
用途別	P 運動用/固定用 V 真空フランジ用 G 固定用 S 細固定用(JIS規格外)		各外)	一般工刻	業用	運動用/	固定用		固定用	

*:JIS規格外

(2) バックアップリングの種類

バックアップリングは運動用と円筒面固定用Oリングとともに使用され、おもにOリングのはみ出しを防止します。

表2.1.2にバックアップリングの種類を示します。

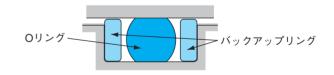
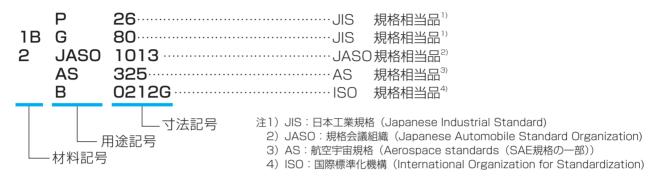


図2.1.1 バックアップリングを用いた ロリングの取付け

表2.1.2 バックアップリングの種類

規格		JIS B 2407					
種類	T1:スパイラル	T2:バイアスカット	T3:エンドレス				
形状							
材料	四ふっ化工チレン樹脂						
用途		運動用/円筒面固定用					


2.2 ロリングとバックアップリング呼び番号の構成

(1) ロリングの呼び番号

Oリングの呼び番号は、材料記号・用途記号・寸法記号で構成します。

表2.2.1 0リング呼び番号の表し方

呼び番号の例

1) 材料記号

記号	規格 (JIS B 2401)	規格 (JASO F 404)	
無記号	NBR-70-1	1種A	
1B	NBR-90	_	
2	NBR-70-2	2種	
3	SBR-70*	3種	
4C	VMQ-70	4種C	
4D	FKM-70	4種口	
4E	ACM-70	4種E	
4F	FKM-90	_	
5	_	5種	
5A	EPDM-70	_	
5B	EPDM-90	_	
6A	HNBR-70	_	
6B	HNBR-90	_	

2) 用途記号

記号	規格	備考		
Р		運動用/固定用		
G	JIS B 2401-1	固定用		
V		真空フランジ用		
S	細系列	固定用		
JASO	JASO F 404	運動用/固定用		
AS	AS 568	固定用		
AU	AS 28775A	運動用/固定用		
Α				
В				
С	I⊟ISO 3601	一般工業用		
D				
Е				

*: JIS規格外

(2) バックアップリングの呼び番号

Oリング用バックアップリングの呼び番号は形式記号と適用Oリング呼び番号で構成します。

表2.2.2 バックアップリング呼び番号の表し方

呼び番号の例

■ 形式記号 (バックアップリングの種類)

記号	バックアップリングの形状
T1	スパイラル
T2	バイアスカット
T3	エンドレス

2.3 ロリングの選定

(1) ロリングの材料

この表以外にも、さまざまな用途に適合する特殊材料がありますのでJTEKTにご相談ください。

0リングの材料には、おもにJIS B 2401、JASO F 404の規格に適合する材料を用います。 おもなゴム材料とその物理的性質を表2.3.1に示します。

表2.3.1 ロリングに用いるおもなゴム材料と物理的性質

	規格						種	類						
	JIS B 2401	NBR-70-1	NBR-90	NBR-70-2	HNBR-70	HNBR-90	SBR-70 ³⁾	VMQ-70	FKM-70	FKM-90	ACM-70	EPDM-70	_	EPDM-90
	JASO F 404	1種A	_	2種	_	_	3種	4種C	4種D	_	4種E	_	5種	_
	材料·用途	- L - '	ニトリルゴム	- k - ' /	マルギルートリリ	マルギルートリリ	スチレン	シリコーンゴム	ふっ実づり	ふっまづり	アクリルゴム	エチレン	エチレン	エチレン
	材料:用壓	ニトリルゴム		ニトリルゴム	水素化二トリル	水素化二トリル	ブタジエンゴム		ふっ素ゴム	ふっ素ゴム		プロピレンゴム	プロピレンゴム	プロピレンゴム
		(NBR)	(NBR)	(NBR)	ゴム (HNBR)	ゴム (HNBR)	(SBR)	(VMQ)	(FKM)	(FKM)	(ACM)	(EPDM)	(EPDM)	(EPDM)
試験項目		耐鉱物	加油田	耐ガソリン用	耐鉱物油	而+ <i>表</i> 九 FF	耐動植物油用		而土表	· 執用		耐動植物油·	耐クーラント	耐動植物油·
武		川り却ムキ	勿)田円	順カンリン用	川り並んわり田	・川川赤作用	110到他初油用		光度	· (4)		ブレーキ油用	液用	ブレーキ油用
常態	タイプAデュロメータ硬さ ¹⁾	A70±5	A90±5	A70±5	A70±5	A90±5	A70±5	A70±5	A70±5	A90±5	A70±5	A70±5	A70±5	A90±5
	引張強さ(MPa)最小	10.0	14.0	10.0	16.0	16.0	9.8	3.5	10.0	10.0	6.0	10.0	9.8	10.0
	伸び(%) 最小	250	100	200	180	100	150	60	170	80	100	150	150	80
	引張応力(MPa)最小 (100%伸びのとき)	2.5	_	2.5	2.5	_	2.7	_	2.0	_	_	_	2.7	_
老化試験	温度および時間	120℃	, 72h	100℃, 72h	150℃	, 72h	100℃, 70h	230℃	C, 72h	230℃, 72h	150℃, 72h	100℃, 72h	120℃, 70h	100℃, 72h
	硬さ変化 最大	+10	+10	+10	+15	+15	+10	+10	+5	+5	+10	+10	+10	+10
	引張強さ変化率(%)最大	-15	-25	-15	-30	-30	-15	-10	-10	-10	-30	-15	-20	- 15
	伸び変化率(%)最大	-45	-55	-40	-40	-40	-45	-25	-25	-25	-40	-45	-40	-45
圧縮永久ひずみ	温度および時間	120℃	, 72h	100℃, 72h	150℃	, 72h	100℃, 70h	175℃, 72h	200℃, 72h	200℃, 72h	150℃, 72h	100℃, 72h	120℃, 70h	100℃, 72h
試験	圧縮永久ひずみ率(%)最大	40	40	25	40	40	25	30	40	40	60	25	40	30
浸せき試験	温度、時間および試験油	120℃	, 72h	23℃, 72h	150℃	, 72h	100℃, 70h	175℃	C, 72h	175℃, 72h	150℃, 72h	100℃, 72h	100℃, 70h	100℃, 72h
	温度、时间のより武器油	潤滑油	No. 1 ²⁾	燃料油No.1 ²⁾	潤滑油	No. 1 ²⁾	ブレーキ液2)	潤滑油	No. 1 ²⁾	潤滑油No.1 ²⁾	潤滑油No.1 ²⁾	ブレーキ液2)	クーラント液	ブレーキ液²)
	硬さ変化	-5~+8	-5~+8	-8~0	-5~+10	-5~+10	-15~0	-10~+5	-10~+5	-10~+5	-7~+10	-15~0	-5~+5	-15~0
	引張強さ変化率(%)最大	-15	-20	-15	-20	-20	-40	-20	-20	-20	-30	-40	-40	-40
	伸び変化率(%)最大	-40	-40	-25	-40	-40	-40	-20	-20	-20	-40	-40	-40	-40
	体積変化率(%)	-8~+5	-8~+5	-3~+5	-10~+5	-10~+5	0~+12	0~+10	-5~+5	-5~+5	-5~+5	0~+12	-5~+5	0~+12
	温度,時間および試験油	120℃	, 72h	23℃, 72h	150℃	, 72h			175℃, 72h	175℃, 72h	150℃, 72h			
		潤滑油	No.3 ²⁾	燃料油No.2 ²⁾	潤滑油	No.3 ²⁾			潤滑油No.3 ²⁾	潤滑油No.3 ²⁾	潤滑油No.3 ²⁾			
	硬さ変化	-15~0	-10~+5	-20~0	-15~+5	-15~+5	_	_	-10~+5	-10~+5	-20~0	_	_	_
	引張強さ変化率(%)最大	-25	-35	-45	-30	-35			-20	-20	-40			
	伸び変化率(%)最大	-35	-35	-45	-40	-40			-20	-20	-40			
	体積変化率(%)	0~+20	0~+20	0~+30	0~+30	0~+25			-5~+5	-5~+5	0~+30			
低温衝撃 ぜい化試験	衝撃ぜい化限界温度(℃)最大	-13	_	-10	_	_	-40	-50	-15	_	-1	_	-40	_
低温弾性 回復試験	TR10値(℃)最大	-15	-15	-10	-15	-15	_	-30	-10	-10	-10	-30	-	-25
腐食試験	温度および時間	70±1℃, 24h	٦											
网区叫歌	外観	相手金属を腐食	したり、粘り付き	を生じさせてはな	ょらない。 -									
	/ 「世兀	ただし、金属面	の変色は腐食と認	思めない。										

注1) 瞬間値を採用

2) 詳細はJIS B 2401-1の附属書を参照ください。

3)JIS規格外

(2) ロリング材料の選定

Oリングは、密封対象物と接して用いることになりますので、Oリングの材料は密封対象物に対して化学的に安定していなければなりません。

おもなゴム材料の各種媒体に対する適性を表2.3.2に示します。なお、詳細についてはJTEKTにご相談ください。

○:耐性があります。

○:特定の場合を除いて耐性があります。

△:特定の場合を除いて耐性がありません。

×:耐性がありません。

表2.3.2 0リングに用いるゴム材料と各種媒体との適合性

	規格								類						
	JIS B 2401	NBR-70-1	NBR-90	NBR-70-2	HNBR-70	HNBR-90	SBR-70*	VMQ-70	FKM-70		FKM-90	ACM-70	EPDM-70	_	EPDM-90
	JAS0 F 404	1種A	_	2種	_	_	3種	4種C	4種D		_	4種E	_	5種	_
	材料	ニトリルゴム I	ニトリルゴム (NBR)	ニトリルゴム (NBR)	水素化二トリル ゴム (HNBR)	水素化二トリル ゴム(HNBR)	スチレン ブタジエンゴム (SBR)	シリコーン ゴム (VMQ)	ふっ素ゴム (FKM)		ふっ素ゴム (FKM)	アクリルゴム (ACM)	エチレンプロ (EPI		エチレン プロピレンゴム (EPDM)
	使用温度範囲 (目安)(℃)	-30~100	-25~100	-25~80	-30~140	-25~140		-50~200	-15~200		-10~200	-15~130	-45	-130	-40~130
耐	耐オゾン性	Δ		Δ)	Δ	0	0		0	0		0	•
耐候	耐炎性	×		×	×		×	\bigcirc				×		×	
ガー	耐放射線性			\triangle		1	0	\triangle	\triangle		\triangle	×		\circ	
ス	都市ガス	0		0	C)	\triangle	Δ	©		0	0		Δ	
性	LPG			0)	×	×			0	\triangle		X	
耐	ギヤオイル	0)	0	C)	×	×	0		0	0		×	
1103	エンジン油	0		0	0)	×	\triangle				0		×	
潤	マシン油			0	0)	×	\bigcirc				0		×	
ta.	スピンドル油	0		0	0)	×	Δ	0		0	0		×	
滑	リチウムグリース)	0	0)	×					0		\times	
油	シリコーングリース	0)	0	0)	0	\times				0			
	カップグリース	0)	©)	×	Δ	©		©	0		×	
性	冷凍機油(鉱油)	0		0)	×	\triangle	0			0		×	
而士	タービン油	0)	0	0)	×	0	0		0	0		×	
נטוו	トルコン油			0		Δ.	×	\triangle				0		×	
作	ブレーキ油			\triangle		Δ.	0	\bigcirc	\triangle		\triangle	×			
動	シリコーン系	0)	0	©)	0	×	©		0	0		©	
油	リン酸エステル系	×		×	×		×	\circ	\triangle		\triangle	×			
1.4	水+グリコール系)	0)	0	\triangle	\bigcirc		\circ	×			
淮	油+水エマルジョン系	0)	0	©)	\triangle	\triangle	0		0	×		\triangle	
耐	ガソリン			0			×	×	0		0	\triangle		X	
耐燃	軽油・灯油	0		0	©		×	\triangle	0		0	\triangle		×	
料	重油	Δ		0		·	×	X	0		<u>©</u>	×		X	
	水・温水			0			0	\circ	\circ		\circ	×		0	
耐	水蒸気・熱水	0		0			0	Δ.	\triangle		\triangle	×		0	
耐水性	不凍液入り水						<u>^</u>	\triangle	0		0	×		0	
-	水系切削油	0		0			Δ		<u> </u>		<u> </u>	X			
耐	トリクロロエチレン アルコール	×		×	×		×	×	\triangle		\triangle	×		×	
	ベンゼン	×		×	×		×	×	Δ		Δ	×		×	
薬		 										Δ			
	エチレングリコール アセトン	© ×		© ×	© ×			© _	© ×		© ×	×		© ○	
	ゲビトン 塩酸20%	× Δ		× △	×			\triangle	× ©		× ©	х Д		0	
品															
	硫酸30%	0		0			0	0	0		0	△ ✓		0	
	硝酸10%	×		×	×		×	×	© ×		© ×	×		() ()	
性	カ/m/t / <u> </u>	Y			· NBR-70-1	・HNBR-70よ	・ブレーキ	 ·耐熱性、	· 最も優れた		· FKM-70 (4		· 耐オゾン性、		·EPDM-70
性	か性ソーダ30%	· 最丰, — 船的	· NRR- / 11- 1	1 • // '/ / /			・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	100 TK IX .	AX U 1交1 いし	1		ー・シルコ	11011 ノノ圧、		D IVI - / U
性	<u>か性ソータ30%</u> 特 長	・最も一般的 な材料 ・耐油性、 耐摩耗性、 耐熱性に優れる ・硬さA70	・NBR-70-1 (1種A) より も硬く、耐圧 性に優れる ・その他の特性 は、NBR- 70-1(1種A) とほぼ同等	・ガソリン、 軽油、灯油 の燃料油に 優れた耐油 性を有する	(1種A) よりも、耐力 りも、耐力 ゾン性、耐熱 油性、耐熱 性に優れる ・硬さA70	りも硬く、耐 圧性に優れる ・その他の特性 は、HNBR- 70とほぼ同 等 ・硬さA90	油、動植物 油に最も優 れた特性を 有する	耐寒性に優れる ・広い温度範 田で優れた 圧縮復元性 を有する	耐油性、 耐薬品性、 耐熱性を有する ・広範囲な温度で使用可能		種D) よりも 硬く、耐圧性 に優れる・その他の特性 は、FKM-70 (4種D) とほ ぼ同等	性に優れる ・特に、耐高 温油に優れ	絶縁性に優t ・硬さA70		(5種) より も硬く、耐圧 性に優れる ・その他の特性 は、EPDM- 70(5種) とほぼ同等

^{*:}JIS規格外

(3) 太さの選定

0リングを用いて流体を密封する場合、0リングを取り付ける溝の深さは、使用する0リングの太さより浅くし、0リングを圧縮するように設計します(つぶししろをつける)。

0リングを過大に圧縮すると永久ひずみが生じて密封性能に影響を及ぼしますので、つぶししろは適切に選ばなければなりません。

一般にOリングのつぶし率は、太さの約8%(密封機能上から)~30%(ゴム材料の圧縮永久ひずみの限界から)をとります。

0リングの太さと圧縮永久ひずみ率の関係を、図 2.3.1に示します。

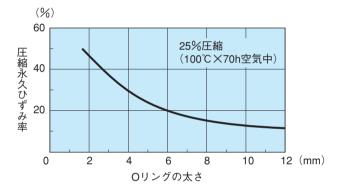


図2.3.1 ロリングの太さと圧縮永久ひずみ率の関係

図2.3.1に示すようにOリングの圧縮率を一定にした場合(図は25%圧縮)、太さの太い方が、永久ひずみ率が小さくなります。

さらに取付寸法の加工誤差に対しても優位に働きますので、太いOリングを使用する方が、安定した密封性を得ることができます。

とくに運動用の場合は、太い方がOリングのねじれ防止に効果があり、また取付時のねじれ防止にも有利になりますので、スペースの許す限り太いOリングを使用するようにします。

2.4 ロリングの使用法

(1) 密封のしくみ

図2.4.1は、使用圧力によってOリングが変形する状態を示したものです。

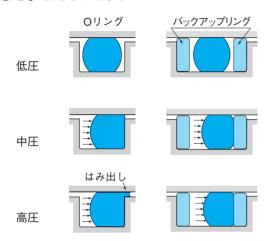


図2.4.1 圧力による0リングの変形

0リングに約8~30%の圧縮(つぶし率)を与えて、 溝に取り付けると、低圧の場合は0リング自体の弾性に よって、セルフシールができます。

使用圧力が高くなるに従い、Oリングは溝の片側に押し付けられて密封はより完全になります。

さらに圧力が高くなると、Oリングは溝のすきまから はみ出して破損し、密封機能が低下してしまいます。

このような高圧の場合には、バックアップリングを 併用してはみ出しを防止します。

(2) バックアップリング

バックアップリングは、運動用と円筒面固定用Oリングに使用されます。

Oリングの両側から高圧がかかる場合は、バックアップリングをOリングの両側に取り付け、一方向からの高圧に限られる場合には、バックアップリングをOリングの低圧側に1個取り付ければよいことになります。

しかし、はみ出しが問題にならない低圧でも、バックアップリングはOリングの破損原因の大半であるむしれや損傷などを防止して、Oリングの寿命を長くする効果があります。

一般的には、2個のバックアップリングを0リングの両側に取り付けるのが好ましいことですが、設計の簡素化から取付スペースが狭く2個のバックアップリングが取り付けられない場合は、低圧側に1個取り付けるようにします。

Oリングのはみ出しは、作用する圧力、Oリングの硬さと円筒面のすきまに関係します。バックアップリングの使用は、図2.5.2のOリングのはみ出し限界値を参考に決定してください。

はみ出し防止効果がもっとも優れているのはエンドレス形状(T3)ですが、取付性においてはバイアスカット(T2)・スパイラル形状(T1)が優れています。

一般にはスパイラル形状がもっとも多く用いられています。

スパイラル形状は、圧力10MPaから20MPaの間で使用します。使用温度が100℃を超える場合は、圧力10MPa未満で使用します。

バイアスカット形状は、圧力15MPaから20MPaを超えても、0リングの保護に優れています。

エンドレス形状は、圧力が25MPaを超え、温度が 135℃を超える場合に適しています。

バックアップリングの材料はすべての媒体に対して低温から高温の広範囲で安定し、溶解腐食を起こしにくい四ふっ化エチレン樹脂(PTFE)を使用しています。

(3) 運動用Oリング

Oリングの取付溝をピストンに設ける場合は、耐久性・密封性をより高めるためOリングを2個使用してください(図2.4.2)。また、無給油式で使用する場合は2個のOリングの間の空間にグリースを充填してください。

充填するグリースは、リチウム石けん基で、ちょう 度No.2のものが適しています。

シリンダに取付溝を設ける場合は、ダストシールを 併用してOリングとダストシールの間にグリースを充填 してください。

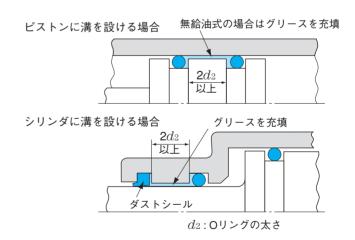


図2.4.2 運動用Oリングの取付例

シリンダ材料が鋳物の場合や低摩擦運動に使用する 場合はJTEKTにご相談ください。

(4) 円筒面固定用Oリング

0リングのつぶし率が最小値の8%に近くなっていて しかも低圧力で使用した場合、仕上げ面の精度が密封 性能に大きく影響します。

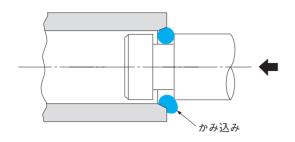


図2.4.3 ロリングのたるみとかみ込み

そのため、取付溝の精度は、運動用Oリングと同じ精度に仕上げるようにしてください。

寸法表どおりのOリングおよび溝寸法を適用した場合でも、寸法許容差の組合わせや取付方法によってはOリングにたるみが生じ、取付けの際にOリングをかみ込むことがあります(図2.4.3)。

とくに、内径が比較的大きいOリングを取り付ける際は、たるみに注意してください。

内径が大きい(150mm以上)場合、たるみを防止するために、溝寸法に適応したOリングでなく、1サイズ小さいOリングを使用する方法もあります。その場合Oリングのつぶししろには十分な検討をする必要がありますので、JTEKTにご相談ください。

(5) 平面固定用Oリング

Oリングのつぶししろは、やや大き目に設定してください。

内圧がかかる場合は、Oリング外径を取付溝寸法 $\phi d\tau$ に合わせて選定し、外圧がかかる場合は、Oリング内径を取付溝寸法 ϕds に合わせて選定してください(図 2.4.4 (a), (b))。

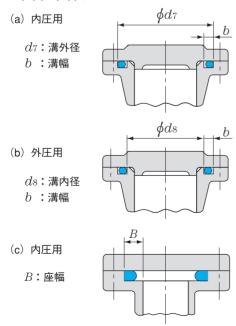


図2.4.4 平面固定用のOリング溝

Oリングにかかる圧力が、一方向の場合には、加工を容易にするため、高圧側の溝側面を省略しても差し支えありません(図2.4.4 (c))。この場合、B 寸法は平面固定用の溝幅 b (図2.4.4 (a))の最小寸法よりも大きくとってください。

内圧用で、外径寸法が比較的小さい場合は(30mm以下)、0リングの取付けに際して不具合を生じることがありますので、取付溝寸法 $\phi d\tau$ は約0.2 \sim 0.3mm大きくとってください。

内径が比較的大きく(150mm以上)、太さが細い(3mm以下)のリングを用いた場合、のリングが取付溝に完全に装着されず溝から飛び出した状態で取り付けられ、のリングの一部が切り取られることがありますので十分に注意してください(図2.4.5)。

飛び出しを防止するには、太いOリングを使用すると効果があります。

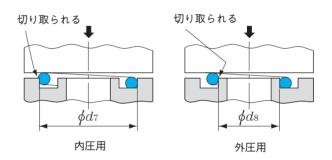


図2.4.5 0リングの飛び出し

(6) 真空フランジ用Oリング

真空用機器に使用する場合は気体が密封対象となり ますので取付部の表面仕上げにとくに注意してください。

また、真空度に適したゴム材料を選定する場合は、 JTEKTにご相談ください。

(7) 三角溝に取り付ける場合

軸やフランジのコーナーを利用して0リングを取り付ける場合、三角溝の A 寸法は0リングの太さの1.3~1.4倍程度にしてください(図2.4.6)。

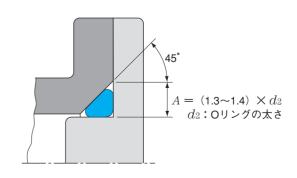
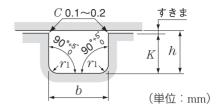


図2.4.6 三角溝の寸法

■ 2.5 0リング取付溝の設計


2.5 ロリング取付溝の設計

(1) つぶししろとつぶし率

JIS規格に基づくOリングのつぶししろ寸法とつぶし率を表2.5.1に示します。このつぶししろに応じた取付満寸法は、Oリングの呼び番号ごとに寸法表に示しています。

JIS規格以外のOリングのつぶししろ寸法はそれぞれの寸法表に示しています。

図2.5.1に溝部の形状と つぶししろ およびつぶし率 の関係を詳細に示す。

1) 溝深さ K

h 寸法は、Oリングのつぶし率が $8\sim30\%$ になるようにしてください。

K 寸法は、すきまの2倍(直径値)が図2.5.2の値を超えないようにしてください。

つぶししろ=
$$d_2-h$$
 つぶし率= $\frac{d_2-h}{d_2}$ ×100 (%)

d2: 0リングの太さ

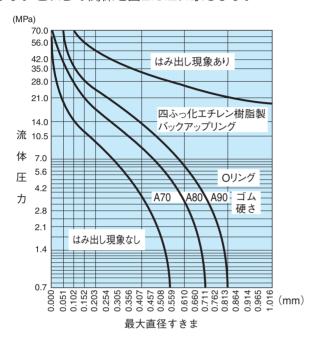
2) 溝幅 b

b 寸法は、充填率が90%以下になるようにしてください。

充填率=
$$\frac{\pi \times (d_2/2)^2}{b \times h} \times 100 (\%)$$

図2.5.1 溝部の形状とつぶししろ(率)の関係

表2.5.1 0リングのつぶししろ寸法とつぶし率


						つぶ	ししろ寸	法とつふ	じ率		
呼び番号	(コリングの寸法 mm	າ	運	動用/円	筒面固定			平面回	国定用	
,, , ,					m	9			m		6
	太さ d ₂	内径 化	d_1	最大	最小	最大	最小	最大	最小	最大	最小
P3~P10	1.9±0.08	2.8~ 9.8		0.48	0.27	24.2	14.8	0.63	0.37	31.8	20.3
P10A~P18	2.4±0.09	9.8~ 17.8	内	0.49	0.25	19.7	10.8	0.74	0.46	29.7	19.9
P20~P22	2.4±0.00	19.8~ 21.8	内 径 d ₁	0.43	0.20	10.7	10.0	0.74	0.40	20.7	10.0
P22A~P40	3.5±0.1	21.7~ 39.7	の許容差は、	0.60	0.32	16.7	9.4	0.95	0.65	26.4	19.1
P41~P50	0.0±0.1	40.7~ 49.7	 差 は	0.00	0.52	10.7	3.4	0.33	0.03	20.4	19.1
P48A~P70	5.7±0.13	47.6~ 69.6									
P71~P125	5.7±0.13	70.6~124.6	そ れ ぞ れ の	0.83	0.47	14.2	8.4	1.28	0.92	22.0	16.5
P130~P150	5./±0.13	129.6~149.6	れの								
P150A~P180		149.5~179.5	Oリング寸法表に記載され								
P185~P300	8.4±0.15	184.5~299.5	グサ	1.05	0.65	12.3	7.9	1.70	1.30	19.9	15.8
P315~P400		314.5~399.5	法表								
G25~G40		24.4~ 39.4	こ に 記								
G45~G70	01401	44.4~ 69.4	載 さ	0.70	0.40	21.85	13.3	0.85	0.55	26.6	18.3
G75~G125	3.1±0.1	74.4~124.4	7	0.70	0.40	21.85	13.3	0.85	0.55	26.6	18.3
G130~G145		129.4~144.4	います								
G150~G180	5.7±0.10	149.3~179.3] <u>ज</u> °	0.00	0.47	140	0.4	1.00	0.00	22.0	165
G185~G300	5.7±0.13	184.3~299.3		0.83	0.47	14.2	8.4	1.28	0.92	22.0	16.5

(2) 取付溝からのはみ出し

円筒面に取り付けたOリングおよびバックアップリングの溝部からのはみ出しは、おもに円筒面のはめあいすきまに関係します。

また、密封する流体の圧力や0リングの硬さも影響します。これらの関係を図2.5.2に示します。

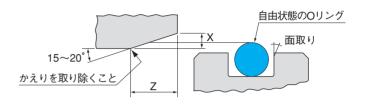
図2.5.2 0リングおよびバックアップリングのはみ出し限界値

図のすきまは、シリンダ内圧によるシリンダ内径寸法の増加分を考慮しておりませんので、シリンダ内径寸法の増加が考えられる場合は、すきまの増加分も見込んですきまの値を図の値の75%にしてください。

また、Oリングが図のすきまの値を超える場合は、バックアップリングをご使用ください。

(3) 取付溝の表面粗さ

○リング取付溝の表面は、○リングのシール機能を十分に発揮させ○リングの寿命を長くし、また摩擦抵抗を小さくするために、表2.5.2に示すような表面粗さに仕上げてください。


表2.5.2 取付溝の表面粗さ

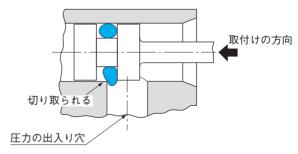
機器の部分	用途	[二十の]	かかり方	表面	粗さ
付交合合♥ノロルノ」	用壓		נלפינוינ	μmRa	μmRz
		脈動なし	平面	3.2	12.5
	固定用	が到るし	円筒面		
溝の側面		脈動あり		1.6	6.3
および底面			プリングを	1.0	0.0
	運動用	使用する場	台		
	建 圳川	バックアッ 使用しない	プリングを)場合	0.8	3.2
ロリングの	固定用	脈動なし		1.6	6.3
シール部の	回化用	脈動あり		0.8	3.2
接触面	運動用	-	_	0.4	1.6
ロリングの製	き	D部		3.2	12.5

(4) 取付部の面取り

Oリングを取り付ける際、シリンダやピストンロッドの角が、Oリングに傷を付ける恐れがありますので、鋭利な角は全て表2.5.3に示す面取りを施し、角部に丸みを付けてください。

表2.5.3 取付部の面取り

単位:mm


ロリング	ブの太さ	X(最小)	Z	1)
を超え	以下	人(取力リ	15°の場合	20°の場合
_	2.4	0.9	3.4	2.5
2.4	3.5	1.1	4.1	3
3.5	5.7	1.3	4.9	3.6
5.7	8.4	1.5	5.6	4.1

注1) ZはX(最小)の時の値

ピストンシールに用いる場合、Oリングがしゅう動する部分に圧力の出入穴を設計することは、絶対に避けてください。

止むを得ず圧力の出入り穴をOリングがしゅう動する範囲に設ける場合は、出入り穴に面取りを施してください(図2.5.3)。また面取寸法は表2.5.3を参照ください。

出入り穴に面取りがない場合

出入り穴に面取りがある場合

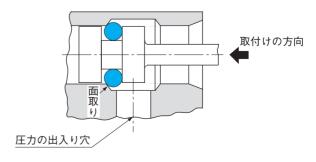


図2.5.3 圧力出入り穴の面取り

■ 2.6 ロリングの保管および取扱い

(5) 取付部の材料および仕上げ方法

一般に運動用のシリンダ材料には鋼、ピストンロッドには焼入れした鋼が適しています。

アルミニウム・黄銅・青銅・モネルメタルや、ある種のステンレス鋼のような軟らかい材料は、耐摩耗性に劣るため、しゅう動面の材料としては好ましくありません。

固定用の場合には、常用圧力に対して必要な強度があり、脈動などの作動条件にも耐えることが必要条件となります。

Oリングとの摩擦を最小にするための仕上げ方法には、ホーニング、バニッシング(ローラバニッシング)、硬質ニッケルメッキ後のポリッシュなどがあります。

とくに硬質ニッケルメッキは、耐熱性・耐摩耗性 および低摩擦性が要求されるところに最適です。

表2.5.4に溝部に用いる材料とその特性を示します。

悪り 5 /	満部材料との適合表
₹C:0.4	

	耐	耐	耐	金	עס	ング
^ □	腐	摩	汚	属の	固	運
金属	食	耗	染	の保護性	定	動
	性	性	性	性	用	用
カドミウム	×	×	×	0	0	0
クロム	0	0	0	×	0	\circ
銅	0	\triangle	×	0	×	×
金	0	Δ	0	Δ	0	×
鉄	×	0	×	0		\circ
鉛	0	×	×	\triangle		×
ニッケル	0	0	Δ	0	0	0
ロジューム	0	0	0	\triangle		\circ
銀	0	\triangle		\triangle		×
すず	0	×	0	Δ	0	×
亜鉛	×	×	×	0	0	×
備考	◎:優		_		○:適 ×:不適	

2.6 ロリングの保管および取扱い

(1) 保管

長期間Oリングの品質を維持するために、以下の項目 にご注意ください。

- 直射日光が当たらない所に置いてください。
- 風通しの少ない所に置いてください。
- 温度30℃以下、湿度65%以下の室内に保管して ください。
- 熱源やオゾンの発生しやすい場所に近づけないでください。
- 包装を完全に行ってください。
- Oリングを変形させないため、フック・針金・ひも などに引っかけたり、通したりして吊り下げない でください。

(2) 取扱い

Oリングの性能を発揮するために、以下の項目にご注意ください。

- Oリングを再使用することは避けてください。
- Oリングを取り付ける際、Oリングとその接触面に は密封媒体を塗布してください。
- Oリングを溝に取り付ける際、ねじれないようにしてください。
- Oリングを取り付けたまま、機器を洗油や、ガソリンなどで洗浄しないでください。洗浄すると、Oリングが膨潤して密封性能が低下することがあります。
- Oリングを取り付ける際、ねじ部あるいはその鋭い 角を通るとき、Oリングを傷つけないような機構を 設けてください。

また取付けの際は、図2.6.1のようにねじ部にキャップを挿入して取り付けるようにしてください。

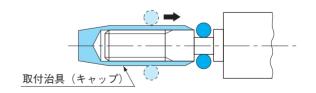


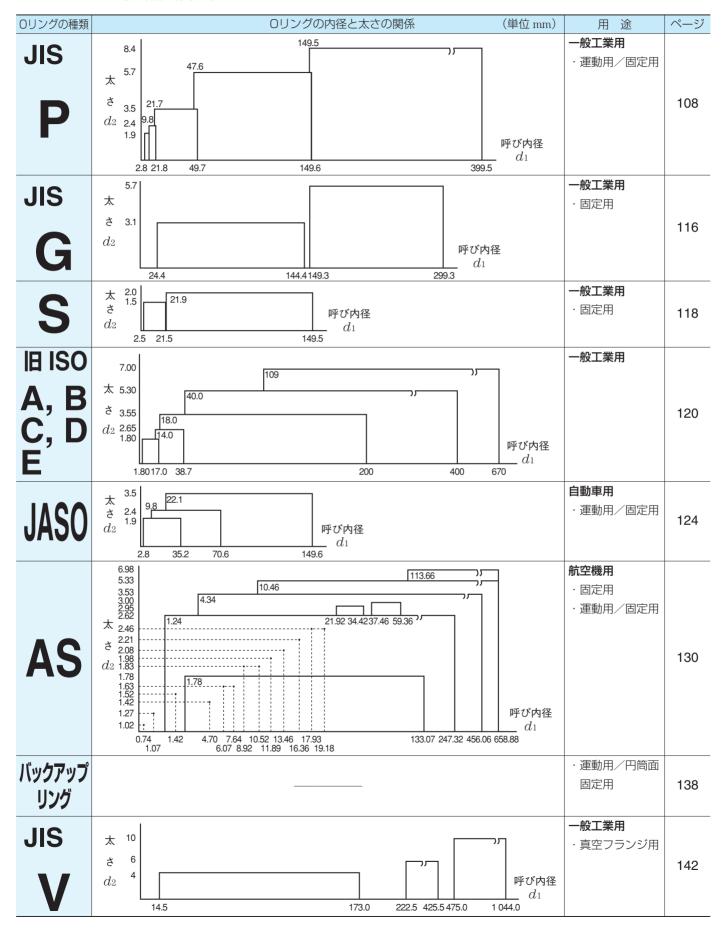
図2.6.1 0リング取付治具

2.7 ロリングの損傷例とその原因および対策

Oリングから漏れが発生した場合、その原因を究明し対策することが必要です。

原因の究明に当たってはOリングを観察するととも

に、シリンダ、ピストンおよび密封媒体も含めて総合 的に調査し、判断することが重要です。

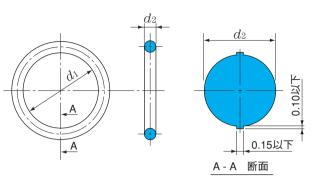

表2.7.1 0リングの損傷例とその原因および対策

運…運動用 固…固定用

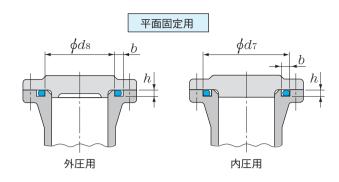
					運…運動用 固…固定用
 現象	外額			主な原因	対策
通 ねじれ	ねじれて変形してい る	W.E.	X S	 運動が速い 偏心運動している しゅう動面の仕上げ不良 ねじられて取付け 	リップパッキンに換える偏心運動を小さくする加工精度を改善する取付けに注意(グリースの塗布)
かじり	部分的にかじりの傷がある)	・取付時、穴、ねじ部、角 部などで破損	各部の面取りをする取付時、治具を使用する
運 固 へ た り	断面が溝部の状態に 変形している			 高温→低温下での繰り返し使用 温度、つぶししろ、流体の関係 	ゴム材料の検討溝寸法の検討
全面摩耗	全面的にすり減っている			1) しゅう動面の仕上げ不良 2) 潤滑剤が不十分 3) ちり、ごみなどの異物 混入	しゅう動面の仕上げを良好にする潤滑剤を充分に与える充分に洗浄し、フィルターなどを用いる
運 固 部分摩耗	しゅう動面が部分的にすり減っている			相手しゅう動面に傷がある	• 相手しゅう動面の仕上げを良 好にする
固 硬 化	硬くなりさらに折り 曲げると、き裂が入 る			・使用温度がゴムの耐熱限 界を越えている	• ゴム材料の検討
膨潤	軟らかくなり膨らん でいる			1) ゴム材料がマッチして いない 2) 燃料油などで洗浄した	ゴム材料の検討白灯油で洗浄する
傷	内、または外面にこすれた傷			取付時にねじ山などで傷をつけた	• 取付時、治具を使用する
固はみ出し	内、または外面が全 体的(部分的)にち ぎれている			1) 圧力、すきま、硬さの 関係による 2) 膨潤による	圧力、すきま、硬さの検討バックアップリングを併用ゴム材料の検討
固 む し れ	内、または外面がつぶ ししろ分だけ切り取ら れているか、部分的に えぐり取られている			1) 面取不良 2) 溝部の寸法が浅い	・面取りを良好にする・溝部の寸法を検討
固 オ ゾ ン き 裂	全面的にひび割れた状態			• 空気中にOリングを伸長 したしたまま放置した	・伸長を与えないこと・ロリングの表面にグリース、 油などを塗布し空気が触れないようにする・ゴム材料の検討

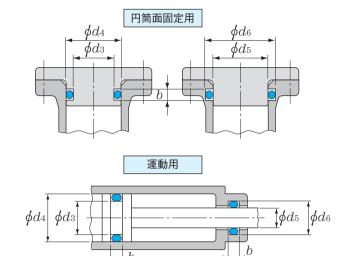
備考:点線…元の線径

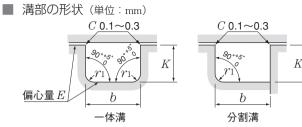
2.8 ロリング寸法編(目次)

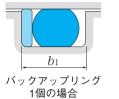


JIS B 2401 P (運動用/固定用)


JTEKT


材料: JIS NBR-70-1、NBR-90、NBR-70-2、EPDM-70、EPDM-90、VMQ-70、FKM-70、FKM-90、HNBR-70、HNBR-90、ACM-70、SBR-70(JIS規格外)


■ Oリングの形状・寸法 (単位:mm)


■ 溝部の寸法

■ バックアップリングを使用する場合 (運動用、円筒面固定用のみ)

・ 2個の場合 単位:mm

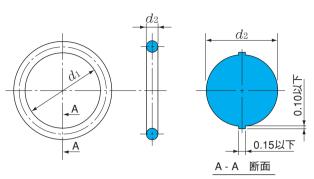
P 3~35

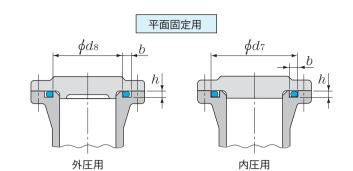
Oリング	の寸法			平面	固定用溝部の)寸法						運	動用、円	筒面固定.	用溝部の	の寸法				
	太さ d2	呼び番号	ds ²⁾ (外圧用)	d7 ²⁾ (内圧用)	b ^{+0.25}	h±0.05	r ₁ 最大	呼び番号	d_3	, d 5	d₃, d₅の許容 するはめあし		$d\epsilon$	a, d_6	3) はめあい 記号	b+0.25 0 バックアップ リングなし	b1 +0.25 0 パックアップ リング1個	b2 +0.25 0 バックアップ リング2個	<i>E</i> ⁴⁾ 最大	r ₁ 最大
$ \begin{array}{c cccc} 2.8 & \pm 0.14 \\ 3.8 & \pm 0.14 \\ 4.8 & \pm 0.15 \\ \hline 5.8 & \pm 0.15 \\ 6.8 & \pm 0.16 \\ \hline 7.8 & \pm 0.16 \\ \hline 8.8 & \pm 0.17 \\ \hline 9.8 & \pm 0.17 \\ \hline \end{array} $	1.9±0.08	P 3 P 4 P 5 P 6 P 7 P 8 P 9 P 10	3 4 5 6 7 8 9	6.2 7.2 8.2 9.2 10.2 11.2 12.2 13.2	2.5	1.4	0.4	P 3 P 4 P 5 P 6 P 7 P 8 P 9 P 10	3 4 5 6 7 8 9	0 -0.05		e9	6 7 8 9 10 11 12 13	+0.05	H10	2.5	3.9	5.4	0.05	0.4
9.8 ±0.17 10.8 ±0.18 11.0 ±0.18 11.8 ±0.19 12.3 ±0.19 13.8 ±0.19 14.8 ±0.20 15.8 ±0.20 17.8 ±0.21 19.8 ±0.22 20.8 ±0.23 21.8 ±0.24	2.4±0.09	P 10A P 11 P 11.2 P 12 P 12.5 P 14 P 15 P 16 P 18 P 20 P 21 P 22	10 11 11.2 12 12.5 14 15 16 18 20 21 22	13.2 14 15 15.2 16 16.5 18 19 20 22 24 25 26	3.2	1.8	0.4	P 10A P 11 P 11.2 P 12.5 P 14 P 15 P 16 P 18 P 20 P 21 P 22	10 11 11.2 12 12.5 14 15 16 18 20 21 22	0 -0.06	h9 f8	e8 e7	13 14 15 15.2 16 16.5 18 19 20 22 24 25 26	+0.06	Н9	3.2	4.4	6.0	0.05	0.4
21.7 ±0.24 22.1 ±0.24 23.7 ±0.25 24.7 ±0.25 25.2 ±0.25 25.7 ±0.26 27.7 ±0.26 27.7 ±0.26 29.2 ±0.25 29.2 ±0.25 30.7 ±0.30 31.2 ±0.31 31.7 ±0.33 33.7 ±0.33 34.7 ±0.34	3.5±0.10	P 22A P 22.4 P 24 P 25 P 25.5 P 26 P 28 P 29 P 29.5 P 30 P 31 P 31.5 P 32 P 34 P 35	22 22.4 24 25 25.5 26 28 29 29.5 30 31 31.5 32 34 35	28 28.4 30 31 31.5 32 34 35 35.5 36 37 37.5 38 40 41	4.7	2.7	0.8	P 22A P 22.4 P 24 P 25 P 25.5 P 26 P 28 P 29 P 29.5 P 30 P 31 P 31.5 P 32 P 34 P 35	22 22.4 24 25 25.5 26 28 29 29.5 30 31 31.5 32 34 35	0 -0.08		e8	28 28.4 30 31 31.5 32 34 35 35.5 36 37 37.5 38 40 41	+0.08		4.7	6.0	7.8	0.08	0.8

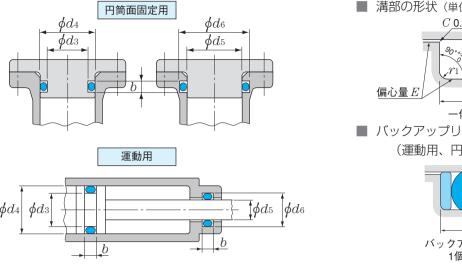
注1) 内径d1の許容差は、JIS B 2401におけるNBR-70-1、NBR-90、NBR-70-2、EPDM-70、EPDM-90、SBR-70 (JIS規格外) の許容差を示します。

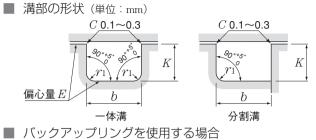
VMQ-70およびACM-70の場合はこの値の1.5倍、FKM-70およびFKM-90、HNBR-70、HNBR-90の場合は1.2倍になります。

- 2) 平面固定用において、外圧が加わる場合は、Oリングの内周が溝の内壁に密着するように設計し、 内圧が加わる場合には反対にOリングの外周が溝の外壁に密着するように設計してください。
- 3) d_4 、 d_6 の許容差に相当するはめあい記号を示します。
- 4) 偏心量 E は、寸法 K の最大値と最小値の差を意味し、同軸度の2倍となります。

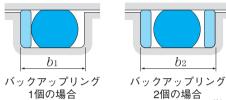

P (運動用/固定用) JIS B 2401


■ 溝部の寸法


JTEKT


材料: JIS NBR-70-1、NBR-90、NBR-70-2、EPDM-70、EPDM-90、VMQ-70、FKM-70、FKM-90、HNBR-70、HNBR-90、ACM-70、SBR-70(JIS規格外)

■ Oリングの形状・寸法 (単位:mm)



(運動用、円筒面固定用のみ)

2個の場合

単位:mm

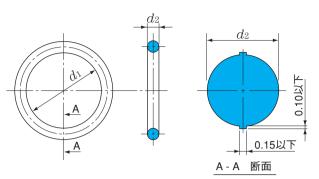
P 35.5~105

																				1 122 111111
	Oリングのマ	法			平面	固定用溝部の)寸法						運重	加用、円筒面固定	用溝部	の寸法				
内径	d_1	太さ d2	呼び番号	ds ²⁾ (外圧用)	dマ ^{²)} (内圧用)	b ^{+0.25}	h±0.05	r ₁ 最大	呼び番号	d3, d 5		の許容差		d_4, d_6	3) はめあい 記号	b +0.25 0 バックアップ リングなし	b1 +0.25 0 バックアップ リング1個	b2 +0.25 0 バックアップ リング2個	<i>E</i> ⁴⁾ 最大	
35.2 35.7 37.7 38.7 39.7 40.7 41.7	±0.34 ±0.34 ±0.37 ±0.37 ±0.37 ±0.38 ±0.39	25.101	P 35.5 P 36 P 38 P 39 P 40 P 41 P 42	35.5 36 38 39 40 41 42	41.5 42 44 45 46 47 48	4.7	2.7	0.8	P 35.5 P 36 P 38 P 39 P 40 P 41 P 42	35.5 36 38 39 40 41 0			e7	41.5 42 44 45 46 47 48 +0.08		4.7	6.0	7.8	0.08	0.8
43.7 44.7 45.7 47.7 48.7 49.7	±0.41 ±0.41 ±0.42 ±0.44 ±0.45 ±0.45	3.5±0.1	P 44 P 45 P 46 P 48 P 49 P 50	44 45 46 48 49 50	50 51 52 54 55 56	4.7	2.1	0.6	P 44 P 45 P 46 P 48 P 49 P 50	44 45 46 48 49 50	3		67	50 51 52 54 55 56		4.7	0.0	7.0	0.08	0.8
47.6 49.6 51.6 52.6 54.6 55.6 57.6 59.6 61.6 62.6 64.6 66.6 70.6 74.6 79.6 84.6 89.6 94.6 99.6 101.6 104.6	±0.44 ±0.45 ±0.47 ±0.48 ±0.49 ±0.50 ±0.52 ±0.53 ±0.55 ±0.56 ±0.57 ±0.69 ±0.62 ±0.65 ±0.69 ±0.73 ±0.77 ±0.81 ±0.84 ±0.85 ±0.87	5.7±0.13	P 48A P 50A P 52 P 53 P 55 P 56 P 58 P 60 P 62 P 63 P 65 P 67 P 70 P 71 P 75 P 80 P 85 P 90 P 95 P 100 P 102 P 105	48 50 52 53 55 56 58 60 62 63 65 67 70 71 75 80 85 90 95 100 102 105	58 60 62 63 65 66 68 70 72 73 75 77 80 81 85 90 95 100 105 110 112 115	7.5	4.6	0.8	P 48A P 50A P 52 P 53 P 55 P 56 P 58 P 60 P 62 P 63 P 65 P 67 P 70 P 71 P 75 P 80 P 85 P 90 P 95 P 100 P 102 P 105	48 50 52 53 55 56 58 60 62 63 65 67 70 71 75 80 85 90 95 100 102 105	h9	f8	e7 e6	58 60 62 63 65 66 68 70 72 73 75 77 80 81 85 90 95 100 105 110 112 115	H9	7.5	9.0	11.5	0.10	0.8

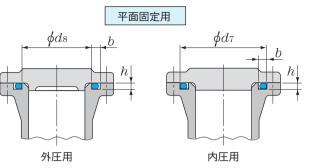
注1) 内径d1の許容差は、JIS B 2401におけるNBR-70-1、NBR-90、NBR-70-2、EPDM-70、EPDM-90、 SBR-70 (JIS規格外)の許容差を示します。

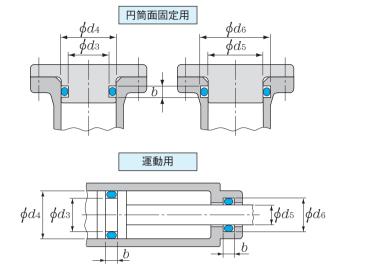
VMQ-70およびACM-70の場合はこの値の1.5倍、FKM-70およびFKM-90、HNBR-70、HNBR-90の場合は1.2倍になります。

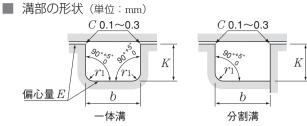
- 2) 平面固定用において、外圧が加わる場合は、Oリングの内周が溝の内壁に密着するように設計し、 内圧が加わる場合には反対にOリングの外周が溝の外壁に密着するように設計してください。
- 3) d4、d6の許容差に相当するはめあい記号を示します。
- 4) 偏心量 E は、寸法 K の最大値と最小値の差を意味し、同軸度の2倍となります。

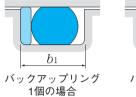

P (運動用/固定用) JIS B 2401

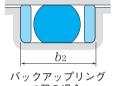
■ 溝部の寸法


JTEKT


材料: JIS NBR-70-1、NBR-90、NBR-70-2、EPDM-70、EPDM-90、VMQ-70、FKM-70、FKM-90、HNBR-70、HNBR-90、ACM-70、SBR-70(JIS規格外)


■ Oリングの形状・寸法 (単位:mm)


平面固定用



■ バックアップリングを使用する場合 (運動用、円筒面固定用のみ)

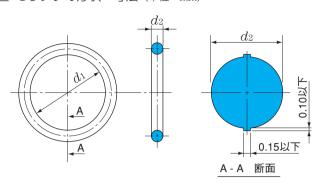
2個の場合

P 110~260

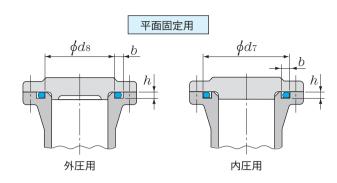
	Oリングのマ	法			平面	固定用溝部の	寸法							運動用、円筒	9面固定	用溝部の	の寸法				
内径	d_1	太さ d2	呼び番号	ds ²⁾ (外圧用)	d ₇ ²⁾ (内圧用)	b+0.25	h±0.05	r ₁ 最大	呼び番号	d3,	d5	d3, d 5の許 するはめる			d6	3) はめあい 記号	b+0.25 0 バックアップ リングなし	b1 +0.25 0 パックアップ リング1個	b2 +0.25 0 バックアップ リング2個	<i>E</i> ⁴⁾ 最大	r ₁ 最大
109.6	±0.91		P 110	110	120				P 110	110				120							
111.6	±0.92		P 112	112	122				P 112	112			f8	e6 122							
114.6	±0.94		P 115	115	125				P 115	115			10	125							
119.6	±0.98		P 120	120	130				P 120	120				130							
124.6	±1.01		P 125	125	135				P 125	125				135							
129.6	±1.05	5.7±0.13	P 130	130	140	7.5	4.6	0.8	P 130	130				140			7.5	9.0	11.5	0.10	0.8
131.6	±1.06		P 132	132	142				P 132	132				142							
134.6	±1.09		P 135	135	145				P 135	135				145		H9					
139.6	±1.12		P 140	140	150				P 140	140		h9		150							
144.6	±1.16		P 145	145	155				P 145	145		113		155							
149.6	±1.19		P 150	150	160				P 150	150				160							
149.5	±1.19		P 150A	150	165				P 150A	150				165							
154.5	±1.23		P 155	155	170				P 155	155				170							
159.5	±1.26	•	P 160	160	175				P 160	160				175							
164.5	±1.30		P 165	165	180				P 165	165				180							
169.5	±1.33		P 170	170	185				P 170	170				185							
174.5	±1.37		P 175	175	190	_			P 175	175	0			190	+0.10						
179.5	±1.40		P 180	180	195				P 180	180	-0.10		-	195	0						
184.5	±1.44		P 185	185	200				P 185	185			f7	200							
189.5	±1.48		P 190	190	205				P 190	190				205							
194.5	±1.51		P 195	195	210				P 195	195				210							
199.5	±1.55		P 200	200	215				P 200	200				215							
204.5	±1.58	8.4±0.15	P 205	205	220	11.0	6.9	1.2	P 205	205				220			11.0	13.0	17.0	0.12	1.2
208.5	±1.61		P 209	209	224				P 209	209				224							
209.5	±1.62		P 210	210	225				P 210	210				225		Н8					
214.5	±1.65		P 215	215	230	1			P 215	215		LO		230							
219.5	±1.68		P 220	220 225	235				P 220	220		h8		235							
224.5	±1.71		P 225	230	240 245				P 225	225				240 245							
229.5 234.5	±1.75		P 230 P 235	235	250	-			P 230 P 235	230 235				250							
234.5	±1.78		P 235 P 240	235	255				P 235 P 240	235			17	250							
239.5 244.5	±1.81 ±1.84		P 240 P 245	240	260				P 240 P 245	240			1/	260							
244.5	±1.84 ±1.88		P 250	250	265	-			P 245 P 250	250			Ш	265							
254.5	± 1.88 ± 1.91		P 255	255	270				P 255	255				270							
259.5	± 1.91 ± 1.94		P 260	260	275				P 260	260			f6	275							
233.3	⊥1.54		F 200	200	2/3				F 200	200			1	213				1		1	

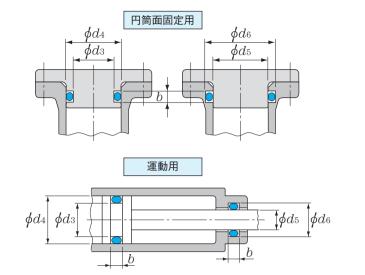
注1) 内径d1の許容差は、JIS B 2401におけるNBR-70-1、NBR-90、NBR-70-2、EPDM-70、EPDM-90、 SBR-70 (JIS規格外) の許容差を示します。

VMQ-70およびACM-70の場合はこの値の1.5倍、FKM-70およびFKM-90、HNBR-70、HNBR-90の場合は1.2倍になります。

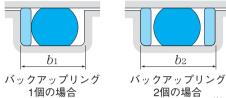

- 2) 平面固定用において、外圧が加わる場合は、Oリングの内周が溝の内壁に密着するように設計し、 内圧が加わる場合には反対にOリングの外周が溝の外壁に密着するように設計してください。
- 3) d4、d6の許容差に相当するはめあい記号を示します。
- 4) 偏心量 E は、寸法 K の最大値と最小値の差を意味し、同軸度の2倍となります。

P (運動用/固定用) JIS B 2401


JTEKT


材料: JIS NBR-70-1、NBR-90、NBR-70-2、EPDM-70、EPDM-90、VMQ-70、FKM-70、FKM-90、HNBR-70、HNBR-90、ACM-70、SBR-70(JIS規格外)

■ Oリングの形状・寸法 (単位:mm)


■ 溝部の寸法

■ 溝部の形状 (単位:mm) 一体溝 分割溝

■ バックアップリングを使用する場合 (運動用、円筒面固定用のみ)

2個の場合

P 265~400

	Oリングのマ	法			平面	固定用溝部の)寸法						運動	用、円筒面固定	用溝部	の寸法				
内径	$d_1^{^{1)}}$	太さ d2	呼び番号	ds ²⁾ (外圧用)	dマ ^{²º} (内圧用)	b ^{+0.25}	h±0.05	r ₁ 最大	呼び番号	d3, d 5		の許容差		d_4, d_6	3) はめあい 記号	b +0.25 0 バックアップ リングなし	バックアップノ	b ₂ +0.25 0 バックアップ リング2個	<i>E</i> ⁴⁾ 最大	r ₁ 最大
264.5	±1.97		P 265	265	280				P 265	265				280						
269.5	±2.01		P 270	270	285				P 270	270			/	285						
274.5	±2.04		P 275	275	290				P 275	275				290						
279.5	±2.07		P 280	280	295				P 280	280			/ [295						
284.5	±2.10		P 285	285	300				P 285	285				300						
289.5	±2.14		P 290	290	305				P 290	290				305						
294.5	±2.17		P 295	295	310				P 295	295			/ [310						
299.5	±2.20		P 300	300	315				P 300	300				315						
314.5	±2.30	8.4±0.15	P 315	315	330	11.0	6.9	1.2	P 315	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	h8	f6	/	330 +0.10	Н8	11.0	13.0	17.0	0.12	1.2
319.5	±2.33		P 320	320	335				P 320	320				335						
334.5	±2.42		P 335	335	350				P 335	335				350						
339.5	±2.45		P 340	340	355				P 340	340			/	355						
354.5	±2.54		P 355	355	370				P 355	355				370						
359.5	±2.57		P 360	360	375				P 360	360				375						
374.5	±2.67		P 375	375	390				P 375	375				390						
384.5	±2.73		P 385	385	400				P 385	385			/	400						
399.5	±2.82		P 400	400	415				P 400	400			/	415						

注1) 内径d1の許容差は、JIS B 2401におけるNBR-70-1、NBR-90、NBR-70-2、EPDM-70、EPDM-90、 SBR-70 (JIS規格外) の許容差を示します。

VMQ-70およびACM-70の場合はこの値の1.5倍、FKM-70およびFKM-90、HNBR-70、HNBR-90の場合は1.2倍になります。

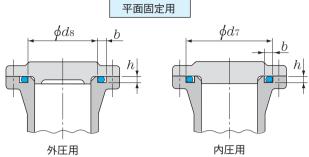
- 2) 平面固定用において、外圧が加わる場合は、Oリングの内周が溝の内壁に密着するように設計し、 内圧が加わる場合には反対にOリングの外周が溝の外壁に密着するように設計してください。
- 3) d4、d6の許容差に相当するはめあい記号を示します。
- 4) 偏心量 E は、寸法 K の最大値と最小値の差を意味し、同軸度の2倍となります。

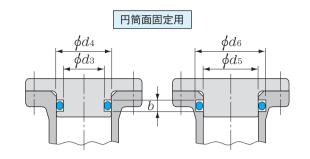
G (固定用) JIS B 2401

JTEKT

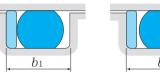
材料: JIS NBR-70-1、NBR-90、NBR-70-2、EPDM-70、EPDM-90、VMQ-70、FKM-70、FKM-90、HNBR-70、HNBR-90、ACM-70、SBR-70(JIS規格外)

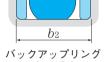
■ 溝部の寸法


■ Oリングの形状・寸法 (単位:mm)



___0.15以下


A - A 断面



■ 溝部の形状 (単位:mm) C 0.1∼0.3 C 0.1~0.3 一体溝 分割溝

■ バックアップリングを使用する場合 (円筒面固定用のみ)

バックアップリング 1個の場合

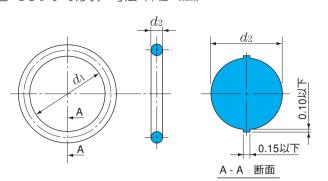
2個の場合

G 25~300

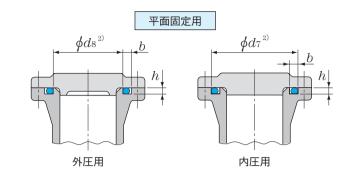
_6 25~300																				単位:mm
Oリングの寸	法			平面	固定用溝部の	寸法							円筒面	固定用溝	部の寸法					
内径 d_1 ¹⁾	太さ d_2	呼び番号	ds ²⁾ (外圧用)	dマ ²⁾ (内圧用)	b ^{+0.25}	h±0.05	<i>r</i> ₁ 最大	呼び番号	ds, d	5		許容差に はめあい!	号	d_6	³⁾ はめあい - 記号		$b_1 ^{+0.25}_0$ バックアップ リング1個		<i>E</i> ⁴⁾ 最大	r ₁ 最大
24.4 ±0.25 29.4 ±0.29 34.4 ±0.33		G 25 G 30 G 35	25 30 35	30 35 40				G 25 G 30 G 35	25 30 35				e9 30 35 40		H10					
39.4 ±0.37 44.4 ±0.41 49.4 ±0.45		G 40 G 45 G 50	40 45 50	45 50 55				G 40 G 45 G 50	40 45 50				e8 45 50 55							
54.4 ±0.49 59.4 ±0.53 64.4 ±0.57		G 55 G 60 G 65	55 60 65	60 65 70				G 55 G 60 G 65	55 60 65				60 65 70							
$\begin{array}{ccc} 69.4 & \pm 0.61 \\ 74.4 & \pm 0.65 \\ 79.4 & \pm 0.69 \end{array}$		G 70 G 75 G 80	70 75 80	75 80 85		0.4	0.7	G 70 G 75 G 80	70 75 80			f8	75 80 85			4.1	5	7.0	0.00	0.7
84.4 ±0.73 89.4 ±0.77 94.4 ±0.81	3.1 ± 0.10	G 85 G 90 G 95	85 90 95	90 95 100	4.1	2.4	0.7	G 85 G 90 G 95	85 90 95				90 95 100			4.1	5.6	7.3	0.08	0.7
99.4 ±0.85 104.4 ±0.87 109.4 ±0.91		G 100 G 105 G 110	100 105 110	105 110 115				G 100 G 105 G 110	100 105 110		h9		e6 105 110 115		Н9					
$\begin{array}{c cccc} 114.4 & \pm 0.94 \\ 119.4 & \pm 0.98 \\ 124.4 & \pm 1.01 \\ \hline 129.4 & \pm 1.05 \end{array}$		G 115 G 120 G 125 G 130	115 120 125 130	120 125 130 135				G 115 G 120 G 125	115 120 125 130				120 125 130 135							
$\begin{array}{ccc} 134.4 & \pm 1.08 \\ 139.4 & \pm 1.12 \end{array}$		G 135 G 140 G 145	135 140 145	140 145 150				G 130 G 135 G 140 G 145	135 140	0 -0.10			140 145 150	+0.10 0						
$\begin{array}{c cccc} & 144.4 & \pm 1.16 \\ \hline & 149.3 & \pm 1.19 \\ & 154.3 & \pm 1.23 \\ & 159.3 & \pm 1.26 \\ \end{array}$		G 150 G 155 G 160	150 155 160	160 165 170				G 150 G 155 G 160	145 150 155 160				160 165 170							
164.3 ±1.30 169.3 ±1.33 174.3 ±1.37		G 165 G 170 G 175	165 170 175	175 180 185				G 165 G 170 G 175	165 170 175			f7	175 180 185							
179.3 ±1.40 184.3 ±1.44 189.3 ±1.47		G 180 G 185 G 190	180 185 190	190 195 200				G 180 G 185 G 190	180 185 190			17	190 195 200							
$\begin{array}{c cccc} & & & & & & & \\ & 194.3 & & & & & & \\ & 199.3 & & & & & & \\ & 209.3 & & & & & & \\ & & & & & & & \\ & & & &$	5.7±0.13	G 195 G 200 G 210	195 200 210	205 210 220	7.5	4.6	0.8	G 195 G 200 G 210	195 200 210				205 210 220			7.5	9.0	11.5	0.10	0.8
$\begin{array}{c cccc} 219.3 & \pm 1.68 \\ 229.3 & \pm 1.73 \\ 239.3 & \pm 1.81 \end{array}$		G 220 G 230 G 240	220 230 240	230 240 250				G 220 G 230 G 240	220 230 240		h8		230 240 250		Н8					
249.3 ±1.88 259.3 ±1.94 269.3 ±2.01		G 250 G 260 G 270	250 260 270	260 270 280				G 250 G 260 G 270	250 260 270				260 270 280							
279.3 ±2.07 289.3 ±2.14 299.3 ±2.20		G 280 G 290 G 300	280 290 300	290 300 310				G 280 G 290 G 300	280 290 300			f6	290 300 310							

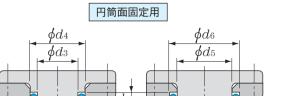
注1) 内径d1の許容差は、JIS B 2401におけるNBR-70-1、NBR-90、NBR-70-2、EPDM-70、EPDM-90、 SBR-70 (JIS規格外) の許容差を示します。

VMQ-70およびACM-70の場合はこの値の1.5倍、FKM-70およびFKM-90、HNBR-70、HNBR-90の場合は1.2倍になります。

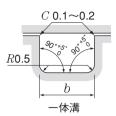

- 2) 平面固定用において、外圧が加わる場合は、Oリングの内周が溝の内壁に密着するように設計し、 内圧が加わる場合には反対にOリングの外周が溝の外壁に密着するように設計してください。
- 3) d4、d6の許容差に相当するはめあい記号を示します。
- 4) 偏心量 E は、寸法 K の最大値と最小値の差を意味し、同軸度の2倍となります。

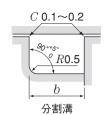
細系列(固定用)


JTEKT


材料:JIS NBR-70-1、FKM-70

■ Oリングの形状・寸法 (単位:mm)




■ 溝部の寸法

■ 溝部の形状 (単位:mm)

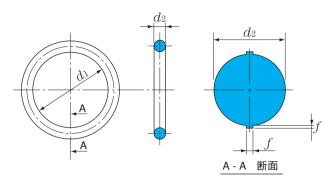
S 3~40 単位:mm

53~	40							単位∶mm
	Oリングのマ	法				溝部の寸法		
	$d_1^{_{1)}}$	太さ d2	呼び番号	$d_{3}, d_{5}, d_{8}^{2)} \begin{array}{c} 0 \\ -0.05 \end{array}$	$d_4, d_6 + 0.05 \\ 0$	d 7 $^{^{2)}}$	b+0.25 0	$h_{-0.1}^{0}$
2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.7 11.5 12.0 13.5		1.5±0.1	S 3 S 4 S 5 S 6 S 7 S 8 S 9 S 10 S 11.2 S 12 S 12.5 S 14	3 4 5 6 7 8 9 10 11.2 12 12.5 14	5 6 7 8 9 10 11 12 13.2 14 14.5 16	5.3 6.3 7.3 8.3 9.3 10.3 11.3 12.3 13.5 14.3 14.8 16.3	2.5	1.0
14.5 15.5 17.5 19.5 21.5 21.9	±0.15		\$ 15 \$ 16 \$ 18 \$ 20 \$ 22 \$ 22.4	15 16 18 20 22 22.4	17 18 20 22 24 25.4	17.3 18.3 20.3 22.3 24.3 25.9		
23.5 24.5 25.5 27.5 28.5 29.5 31.0 31.5 33.5 34.5 35.0 35.5		2.0±0.1	\$ 24 \$ 25 \$ 26 \$ 28 \$ 29 \$ 30 \$ 31.5 \$ 32 \$ 34 \$ 35 \$ 35.5 \$ 36	24 25 26 28 29 30 31.5 32 34 35 35.5	27 28 29 31 32 33 34.5 35 37 38 38.5 39	27.5 28.5 29.5 31.5 32.5 33.5 35.5 35.5 37.5 38.5 39	2.7	1.5
37.5 38.5 39.5			S 38 S 39 S 40	38 39 40	41 42 43	41.5 42.5 43.5		

注1) 内径d1の許容差は、JIS B 2401におけるNBR-70-1の許容差を示します。 FKM-70の場合は2.0倍になります。

2) 平面固定用において、外圧が加わる場合は、Oリングの内周が溝の内壁に密着するように設計し、 内圧が加わる場合には反対にOリングの外周が溝の外壁に密着するように設計してください。 S 42~150

単位:mm

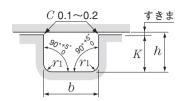

5 42	9130							単位:mm
	OリングのN	法				溝部の寸法		
内径	$d_1^{{}^{\scriptscriptstyle 1)}}$	太さ d2	呼び番号		$d_4, d_6 + 0.05 \\ 0$	$d au^{^{2)}}$	b ^{+0.25}	$h_{-0.1}^{0}$
41.5			S 42	42	45	45.5		
43.5			S 44	44	47	47.5		
44.5			S 45	45	48	48.5		
45.5			S 46	46	49	49.5		
47.5			S 48	48	51	51		
49.5			S 50	50	53	53		
52.5	±0.25		S 53	53	56	56		
54.5	±0.25		S 55	55	58	58		
55.5			S 56	56	59	59		
59.5			S 60	60	63	63		
62.5			S 63	63	66	66		
64.5			S 65	65	68	68		
66.5			S 67	67	70	70		
69.5			S 70	70	73	73		
70.5			S 71	71	74	74		
74.5			S 75	75	78	78		
79.5		2.0 ± 0.1	S 80	80	83	83	2.7	1.5
84.5			S 85	85	88	88		
89.5			S 90	90	93	93		
94.5			S 95	95	98	98		
99.5	± 0.40		S 100	100	103	103		
104.5			S 105	105	108	108		
109.5			S 110	110	113	113		
111.5			S 112	112	115	115		
114.5			S 115	115	118	118		
119.5			S 120	120	123	123		
124.5			S 125	125	128	128		
129.5			S 130	130	133	133		
131.5			S 132	132	135	135		
134.5	±0.60		S 135	135	138	138		
139.5	∪.0∪		S 140	140	143	143		
144.5			S 145	145	148	148		
149.5			S 150	150	153	153		

旧 ISO 3601 (一般工業用)

JTEKT

材料: JIS NBR-70-1

■ Oリングの形状・寸法 (単位:mm)



d1 18~20 単位:m

d_1 1.8~2	20								単位:mm
太さ	d_2	1.80±0.08	2.65±0.09	3	3.55±	E0.10		5.30±0.13	7.00±0.15
ば	b f	0.1以下	0.12以下		0.14	1以下		0.16以下	0.18以下
内径 d1	許容差		Г	呼	び	番	F	<u></u>	
1.80		A0018G							
2.00	±0.13	A0020G							
2.24	±0.13	A0022G							
2.50		A0025G							
2.80		A0028G							
3.15		A0031G							
3.55	±0.14	A0035G							
3.75	±0.14	A0037G							
4.00		A0040G							
4.50		A0045G							
4.87		A0048G							
5.00		A0050G							
5.15		A0051G							
5.30	± 0.15	A0053G							
5.60		A0056G							
6.00		A0060G							
6.30		A0063G							
6.70		A0067G							
6.90		A0069G							
7.10	±0.16	A0071G	-						
7.50	_0.10	A0075G							
8.00		A0080G							
8.50		A0085G							
8.75		A0087G							
9.00	±0.17	A0090G							
9.50		A0095G							
10.0		A0100G							
10.6	±0.18	A0106G							
11.2		A0112G	_						
11.8		A0118G							
12.5	±0.19	A0125G							
13.2		A0132G	DO1400						
14.0		A0140G	B0140G	-					
15.0	±0.20	A0150G	B0150G						
16.0		A0160G	B0160G	-					
17.0	±0.21	A0170G	B0170G		001	900			
18.0		_	B0180G	1	C01				
19.0	±0.22		B0190G		C01				
20.0			B0200G	1	C02	UUG			

※ 旧 ISO:旧JIS規格のISOシリーズを適用

■ 溝部の形状 (単位:mm)

0リングの太さ	隅の丸み
d_2	r_1
1.80	0.3 ±0.1
2.65	0.5 ±0.1
3.55	0.6 ± 0.2
5.30	0.6 ±0.2
7.00	1.0 ± 0.2

1) 溝深さ K

h 寸法は、Oリングのつぶし率が $8\sim30\%$ になるようにしてください。

つぶし率=
$$\frac{d_2-h}{d_2}$$
×100 (%)=8 (%)~30 (%)

K 寸法は、すきまの2倍(直径値)が図2.5.2の値を超えないようにしてください。

その結果、K=h-すきま

 d_2 :Oリングの太さ

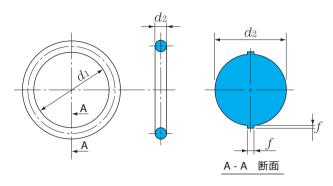
2) 溝幅 b

b 寸法は、充てん率が90%以下になるようにしてください。

充てん率=
$$\frac{\pi \times (d_2/2)^2}{b \times h} \times 100 (\%) < 90 (\%)$$

d_1 21.2~75

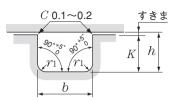
単位:mm


<u>a</u> 1 2 1.2~	775					単位·mm
太さ太	d_2	1.80±0.08	2.65±0.09	3.55±0.10	5.30±0.13	7.00±0.15
ばり	O f	0.1以下	0.12以下	0.14以下	0.16以下	0.18以下
	許容差		D.	チ び 番 ⁵	- 크	
21.2	±0.23		B0212G	C0212G		
22.4	±0.24		B0224G	C0224G		
23.6	±0.24		B0236G	C0236G		
25.0	±0.25		B0250G	C0250G		
25.8	±0.26		B0258G	C0258G		
26.5			B0265G	C0265G		
28.0	±0.28		B0280G	C0280G		
30.0	±0.29		B0300G	C0300G		
31.5	±0.31		B0315G	C0315G		
32.5	±0.32		B0325G	C0325G		
33.5	±0.32		B0335G	C0335G		
34.5	±0.33		B0345G	C0345G		
35.5	±0.34		B0355G	C0355G		
36.5	±0.35		B0365G	C0365G		
37.5	±0.36		B0375G	C0375G		
38.7	±0.37		B0387G	C0387G		
40.0	±0.38			C0400G	D0400G	
41.2	±0.39			C0412G	D0412G	
42.5	±0.40			C0425G	D0425G	
43.7	±0.41			C0437G	D0437G	
45.0	±0.42			C0450G	D0450G	
46.2	±0.43			C0462G	D0462G	
47.5	±0.44			C0475G	D0475G	
48.7	±0.45			C0487G	D0487G	
50.0	±0.46	-		C0500G	D0500G	
51.5	±0.47			C0515G	D0515G	
53.0	±0.48			C0530G	D0530G	
54.5	±0.50			C0545G	D0545G	
56.0	±0.51			C0560G	D0560G	
58.0	±0.52			C0580G	D0580G	
60.0	±0.54			C0600G	D0600G	
61.5	±0.55			C0615G	D0615G	
63.0	±0.56			C0630G	D0630G	
65.0	±0.58			C0650G	D0650G	
67.0	±0.59			C0670G	D0670G	
69.0	±0.61			C0690G	D0690G	
71.0	±0.63			C0710G	D0710G	
73.0	±0.64			C0730G	D0730G	
75.0	±0.66			C0750G	D0750G	

旧 ISO 3601 (一般工業用)

JTEKT

材料: JIS NBR-70-1


■ Oリングの形状・寸法 (単位:mm)

<i>d</i> ₁ 77.5~	-230					単位:mn
太乙	d_2	1.80±0.08	2.65±0.09	3.55±0.10	5.30±0.13	7.00±0.15
ば	b f	0.1以下	0.12以下	0.14以下	0.16以下	0.18以下
内径 <i>d</i> 1	許容差			乎 び 番		
77.5	±0.67			C0775G	D0775G	
80.0	±0.69			C0800G	D0800G	
82.5	±0.71			C0825G	D0825G	
85.0	±0.73			C0850G	D0850G	
87.5	±0.75			C0875G	D0875G	
90.0	±0.77			C0900G	D0900G	
92.5	±0.79			C0925G	D0925G	
95.0	±0.81			C0950G	D0950G	
97.5	±0.83			C0975G	D0975G	
100	±0.84	-		C1000G	D1000G	
103	±0.87			C1030G	D1030G	
106	±0.89			C1060G	D1060G	
109	±0.91			C1090G	D1090G	E1090G
112	±0.93			C1120G	D1120G	E1120G
115	±0.95			C1150G	D1150G	E1150G
118	±0.97	-		C1180G	D1180G	E1180G
122	±1.00			C1220G	D1220G	E1220G
125	±1.03			C1250G	D1250G	E1250G
128	±1.05			C1280G	D1280G	E1280G
132	±1.08			C1320G	D1320G	E1320G
136	±1.10			C1360G	D1360G	E1360G
140	±1.13			C1400G	D1400G	E1400G
145	±1.17			C1450G	D1450G	E1450G
150	±1.20			C1500G	D1500G	E1500G
155	±1.24			C1550G	D1550G	E1550G
160	±1.27			C1600G	D1600G	E1600G
165	±1.31			C1650G	D1650G	E1650G
170	±1.34			C1700G	D1700G	E1700G
175	±1.38			C1750G	D1750G	E1750G
180	±1.41			C1800G	D1800G	E1800G
185	±1.44			C1850G	D1850G	E1850G
190	±1.48			C1900G	D1900G	E1900G
195	±1.51			C1950G	D1950G	E1950G
200	±1.55			C2000G	D2000G	E2000G
206	±1.59	1			D2060G	E2060G
212	±1.63				D2120G	E2120G
218	±1.67				D2180G	E2180G
224	±1.71	1			D2240G	E2240G
230	±1.75				D2300G	E2300G

※ 旧 ISO:旧JIS規格のISOシリーズを適用

■ 溝部の形状 (単位:mm)

0リングの太さ	隅の丸み
d_2	r_1
1.80	02.101
2.65	0.3 ± 0.1
3.55	0.6 +0.2
5.30	0.6 ±0.2
7.00	1.0 ± 0.2

1) 溝深さ K

h 寸法は、Oリングのつぶし率が8~30%になるようにして ください。

つぶし率=
$$\frac{d_2-h}{d_2}$$
×100 (%)=8 (%)~30 (%)

K 寸法は、すきまの2倍(直径値)が図2.5.2の値を超えない ようにしてください。

その結果、K=h-すきま

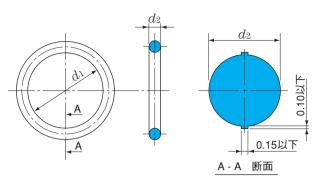
 d_2 :Oリングの太さ

2) 溝幅 b

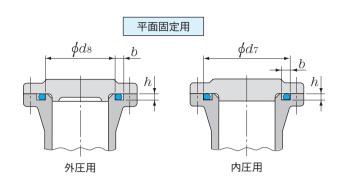
b 寸法は、充てん率が90%以下になるようにしてください。

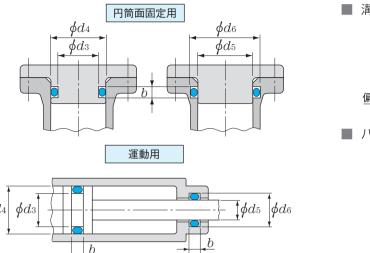
充てん率=
$$\frac{\pi \times (d_2/2)^2}{b \times h} \times 100 (\%) < 90 (\%)$$

$d_1 236 \sim 670$


単位:mm

d_1 236~	·6/U					単位:mm
太さ	d_2	1.80±0.08	2.65±0.09	3.55±0.10	5.30±0.13	7.00±0.15
ばり	b f	0.1以下	0.12以下	0.14以下	0.16以下	0.18以下
	許容差			チャック で 番 を	- 크	
236	±1.79				D2360G	E2360G
243	±1.83				D2430G	E2430G
250	±1.88				D2500G	E2500G
258	±1.93				D2580G	E2580G
265	±1.98				D2650G	E2650G
272	±2.02				D2720G	E2720G
280	±2.08				D2800G	E2800G
290	±2.14				D2900G	E2900G
300	±2.21				D3000G	E3000G
307	±2.25				D3070G	E3070G
315	±2.30				D3150G	E3150G
325	±2.37				D3250G	E3250G
335	±2.43				D3350G	E3350G
345	±2.49				D3450G	E3450G
355	±2.56				D3550G	E3550G
365	±2.62				D3650G	E3650G
375	±2.68				D3750G	E3750G
387	±2.76				D3870G	E3870G
400	±2.84				D4000G	E4000G
412	±2.91					E4120G
425	±2.99					E4250G
437	±3.07					E4370G
450	±3.15					E4500G
462	±3.22					E4620G
475	±3.30					E4750G
487	±3.37					E4870G
500	±3.45					E5000G
515	±3.54					E5150G
530	±3.63					E5300G
545	±3.72					E5450G
560	±3.81					E5600G
580	±3.93					E5800G
600	±4.05					E6000G
615	±4.13					E6150G
630	±4.22					E6300G
650	±4.34					E6500G
670	±4.46					E6700G




材料: JASO1種A、2種、3種、4種C、4種D、4種E、5種

■ Oリングの形状・寸法 (単位:mm)

■ 溝部の寸法

■ 溝部の形状 (単位:mm) C 0.1∼0.2 偏心量E

■ バックアップリングを使用する場合 (運動用、円筒面固定用のみ)

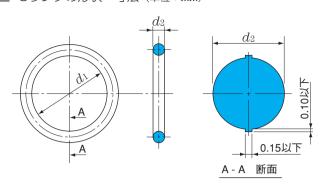
バックアップリング 1個の場合

バックアップリング

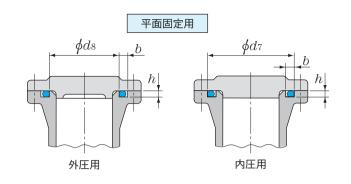
2個の場合

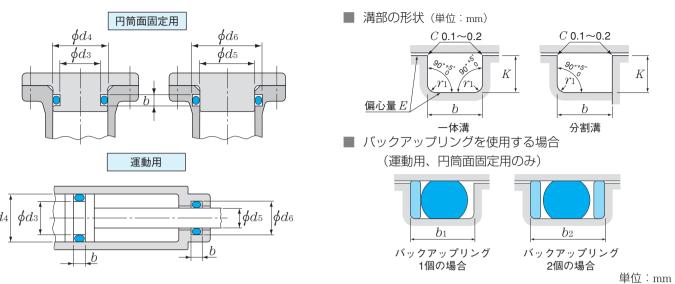
分割溝

d_2 1.9														111247-901	_	-111	·)	単位:mm
Oリングの寸法			平面[固定用溝部の	D寸法						運動用·	円筒面固	定用溝部	の寸法				
内径 d_1 太さ d_2	呼び番号	ds ¹⁾ (外圧用)	d7 ¹⁾ (内圧用)	b ^{+0.25}	h±0.05	r ₁ 最大	呼び番号	d3	d5	d3,d5の 許容差	d_4	d_6	d ₄ ,d ₆ の 許容差	b+0.25 0 バックアップ リングなし	b ₁ +0.25 0 バックアップ リング1個	b2 +0.25 0 バックアップ リング2個	<i>E</i> ²⁾ 最大	r ₁ 最大
2.8 3.8 4.8 5.8 6.8 7.8 1種A、2種 ±0.12 8.8 9.8 3種、4種D ±0.24 12.3 13.0 13.8 14.8 15.8 16.8 17.8 18.8 19.8 21.0 22.1 23.3 24.7 26.2 27.7 29.7 4種C・E、5種 ±0.15 3種、4種D ±0.07 1.9±0.07	JASO 1003 JASO 1004 JASO 1005 JASO 1006 JASO 1007 JASO 1008 JASO 1009 JASO 1010 JASO 1011 JASO 1012 JASO 1014 JASO 1015 JASO 1015 JASO 1016 JASO 1017 JASO 1018 JASO 1019 JASO 1020 JASO 1021 JASO 1022 JASO 1022 JASO 1023 JASO 1025 JASO 1026 JASO 1028 JASO 1030 JASO 1031 JASO 1033 JASO 1035	3 4 5 6 7 8 9 10 11.2 12.5 13.2 14 15 16 17 18 19 20 21.2 22.4 23.6 25 26.5 28 30 31.5 33.5 35.5	6.3 7.3 8.3 9.3 10.3 11.3 12.3 13.3 14.4 15.7 16.4 17.2 18.2 19.2 20.2 21.2 22.2 23.2 24.4 25.5 26.7 28.1 29.6 31.1 33.1 34.6 36.6 38.6	2.5	1.4	0.4	JASO 1003 JASO 1004 JASO 1005 JASO 1006 JASO 1007 JASO 1008 JASO 1009 JASO 1010 JASO 1011 JASO 1012 JASO 1013 JASO 1014 JASO 1015 JASO 1016 JASO 1017 JASO 1018 JASO 1019 JASO 1019 JASO 1020 JASO 1021 JASO 1022 JASO 1022 JASO 1023 JASO 1025 JASO 1026 JASO 1028 JASO 1031 JASO 1031 JASO 1033 JASO 1035	3.1 4.1 5.1 6.1 7.1 8.1 9.1 10.1 11.3 12.6 13.3 14.1 15.1 16.1 17.1 18.1 19.1 20.1 21.3 22.5 23.7 25.1 26.6 28.1 30.1 31.6 33.6 35.6	3 4 5 6 7 8 9 10 11.2 12.5 13.2 14 15 16 17 18 19 20 21.2 22.4 23.6 25 26.5 28 30 31.5 33.5 35.5	0 -0.05	6 7 8 9 10 11 12 13 14.2 15.5 16.2 17 18 19 20 21 22 23 24.2 25.4 26.6 28 29.5 31 33 34.5 36.5 38.5	5.9 6.9 7.9 8.9 9.9 10.9 11.9 12.9 14.1 15.4 16.1 16.9 17.9 18.9 19.2 20.9 21.9 22.9 24.1 25.3 26.5 27.9 29.4 30.9 32.9 34.4 36.4 38.4	+0.05 0 +0.06 0 +0.08	2.5	3.9	5.4	0.05	0.4


注1) 平面固定用において、外圧が加わる場合は、Oリングの内周が溝の内壁に密着するように設計し、 内圧が加わる場合には反対にOリングの外周が溝の外壁に密着するように設計してください。

2) 偏心量 E は、寸法 K の最大値と最小値の差を意味し、同軸度の2倍となります。



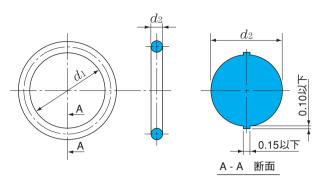

材料: JASO1種A、2種、3種、4種C、4種D、4種E、5種

■ Oリングの形状・寸法 (単位:mm)

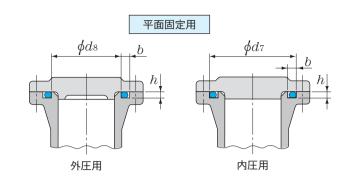
■ 溝部の寸法

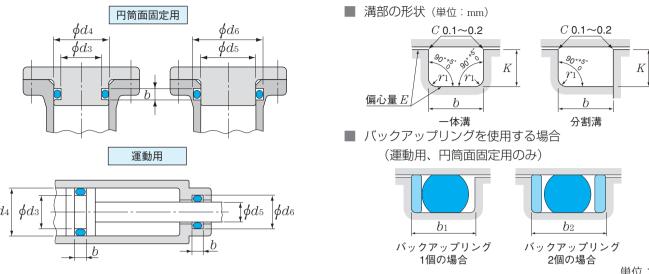
d_2 2.4

	がの寸法			平面平	固定用溝部の	D寸法						運動用・	円筒面固	定用溝部	の寸法				
内径 <i>d</i> ₁	太さ d ₂	― 呼び番号	ds ¹⁾ (外圧用)	d7 ¹⁾ (内圧用)	b+0.25	h±0.05	r ₁ 最大	呼び番号	d_3	d_5	d3,d5の 許容差	d4	d6	d4,d6の 許容差	b ^{+0.25}	b ₁ +0.25 0 バックアップ リング1個	b ₂ +0.25 0 バックアップ リング2個	<i>E</i> ²⁾ 最大	r ₁ 最大
9.8 11.0 12.3 13.0 13.8 14.8 14.8 15.8 16.8 17.8 18.8 19.8 20.8 22.1 23.3 24.7 26.2 27.7 26.2 27.7 29.7 31.2 33.2 35.2 37.2 39.7 42.2 44.7 47.2 47.2 49.7 52.6 55.6 59.6 62.6 62.6 62.6 62.6 70.6 1種A、2種 ±0.30 24.7 1種A、2種 ±0.45 3種、4種に・E、 ±0.45 3種、4種に・E、 ±0.50 4種C・E、 ±0.45 35.2 37.2 39.7 42.2 44.7 47.2 49.7 52.6 55.6 59.6 62.6 62.6 62.6 62.6 70.6 1種A、2種 ±0.50 4種C・E、 ±0.75	を を を を を を を を を を を を を を	JASO 2010 JASO 2011 JASO 2012 JASO 2013 JASO 2014 JASO 2015 JASO 2016 JASO 2016 JASO 2017 JASO 2018 JASO 2019 JASO 2020 JASO 2021 JASO 2022 JASO 2022 JASO 2025 JASO 2025 JASO 2026 JASO 2030 JASO 2031 JASO 2031 JASO 2031 JASO 2031 JASO 2035 JASO 2037 JASO 2040 JASO 2042 JASO 2042 JASO 2047 JASO 2047 JASO 2050 JASO 2056 JASO 2060 JASO 2063 JASO 2067 JASO 2071	10 11.2 12.5 13.2 14 15 16 17 18 19 20 21 22.4 23.6 25 26.5 28 30 31.5 33.5 35.5 37.5 40 42.5 45 47.5 50 53 56 60 63 67 71	14.1 15.3 16.6 17.3 18.1 19.1 20.1 21.1 22.1 23.1 24.1 25.1 26.4 27.6 29 30.5 32 34 35.5 37.5 39.5 41.5 44 46.5 49 51.5 54 57 60 64 67 71 75	3.2	1.8	0.4	JASO 2010 JASO 2011 JASO 2012 JASO 2013 JASO 2014 JASO 2015 JASO 2016 JASO 2016 JASO 2017 JASO 2018 JASO 2019 JASO 2020 JASO 2021 JASO 2022 JASO 2022 JASO 2023 JASO 2025 JASO 2026 JASO 2028 JASO 2030 JASO 2031 JASO 2031 JASO 2035 JASO 2037 JASO 2040 JASO 2042 JASO 2042 JASO 2047 JASO 2047 JASO 2056 JASO 2056 JASO 2056 JASO 2060 JASO 2067 JASO 2071	10.2 11.4 12.7 13.4 14.2 15.2 16.2 17.2 18.2 19.2 20.2 21.2 22.6 23.8 25.2 26.7 28.2 30.2 31.7 33.7 35.7 37.7 40.2 42.7 45.2 47.7 50.2 56.2 60.2 63.2 67.2 71.2	10 11.2 12.5 13.2 14 15 16 17 18 19 20 21 22.4 23.6 25 26.5 28 30 31.5 33.5 35.5 37.5 40 42.5 45 47.5 50 53 56 60 63 67 71	0 -0.06 -0.08 -0.08	14 15.2 16.5 17.2 18 19 20 21 22 23 24 25 26.4 27.6 29 30.5 32 34 35.5 37.5 39.5 41.5 44 46.5 49 51.5 54 57 60 64 67 71 75	13.8 15 16.3 17 17.8 18.8 19.8 20.8 21.8 22.8 23.8 24.8 26.2 27.4 28.8 30.3 31.8 33.8 35.3 37.3 39.3 41.3 43.8 46.3 48.8 51.3 53.8 56.8 59.8 66.8 70.8	+0.06 0 +0.08 0 +0.10	3.2	ハリング1個 4.4	1リング2個	0.05	0.4


注1) 平面固定用において、外圧が加わる場合は、Oリングの内周が溝の内壁に密着するように設計し、 内圧が加わる場合には反対にOリングの外周が溝の外壁に密着するように設計してください。

²⁾ 偏心量 E は、寸法 K の最大値と最小値の差を意味し、同軸度の2倍となります。

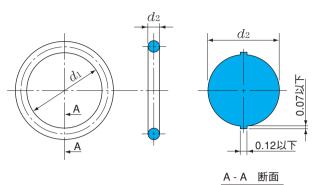



材料: JASO1種A、2種、3種、4種C、4種D、4種E、5種

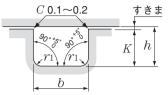
■ Oリングの形状・寸法 (単位:mm)

■ 溝部の寸法

 $d_2 \ 3.5$


<i>a</i> ₂ 3.5							ı	ı										単位:mi
Oリングの寸法			平面	国定用溝部の	り寸法						運動用·	円筒面固	定用溝部					
内径 d ₁ 太さ d ₂	呼び番号	ds ¹⁾ (外圧用)	d ₇ ¹⁾ (内圧用)	b ^{+0.25}	h±0.05	<i>r</i> ₁ 最大	呼び番号	d_3	d5	d3,d5の 許容差	d_4	d6	d4,d6の 許容差	b+0.25 0 バックアップ リングなし		b2 +0.25 0 バックアップ リング2個	<i>E</i> ²⁾ 最大	r ₁ 最大
22.1 23.7 24.7 25.7 27.7 29.7 31.2 31.2 33.7 35.2 4種C·E、5種 ±0.45 37.7 38.7 39.7 41.7 43.7 44.7 44.7 47.7	JASO 3022 JASO 3024 JASO 3025 JASO 3026 JASO 3028 JASO 3030 JASO 3031 JASO 3035 JASO 3035 JASO 3039 JASO 3040 JASO 3042 JASO 3044 JASO 3045 JASO 3048	22.4 24 25 26 28 30 31.5 34 35.5 38 39 40 42 44 45	28.4 30 31 32 34 36 37.5 40 41.5 44 45 46 48 50 51				JASO 3022 JASO 3024 JASO 3025 JASO 3026 JASO 3028 JASO 3030 JASO 3031 JASO 3035 JASO 3035 JASO 3039 JASO 3040 JASO 3042 JASO 3042 JASO 3045 JASO 3048	22.7 24.3 25.3 26.3 28.3 30.3 31.8 34.3 35.8 38.3 39.3 40.3 42.3 44.3 45.3	22.4 24 25 26 28 30 31.5 34 35.5 38 39 40 42 44 45	0 -0.08	28.4 30 31 32 34 36 37.5 40 41.5 44 45 46 48 50 51	28.1 29.7 30.7 31.7 33.7 35.7 37.2 39.7 41.2 43.7 44.7 45.7 47.7 49.7 50.7	+0.08		and the state of t	www.www.man		
49.7 52.6 55.6 59.6 4種C・E、5種 20.75 66.6 70.6 74.6 79.6 84.6 89.6 94.6 99.6 105.6 111.6 117.6 124.6 131.6 139.6 149.6 3種、4種D ±0.80 14種C・E、5種 ±1.20 14種A、2種 ±1.20	JASO 3050 JASO 3053 JASO 3056 JASO 3060 JASO 3063 JASO 3067 JASO 3071 JASO 3075 JASO 3080 JASO 3085 JASO 3090 JASO 3095 JASO 3100 JASO 3112 JASO 3112 JASO 3125 JASO 3132 JASO 3140 JASO 3150	50 53 56 60 63 67 71 75 80 85 90 95 100 106 112 118 125 132 140 150	56 59 62 66 69 73 77 81 86 91 96 101 106 112 118 124 131 138 146 156	4.7	2.7	0.7	JASO 3050 JASO 3053 JASO 3056 JASO 3056 JASO 3060 JASO 3067 JASO 3067 JASO 3071 JASO 3075 JASO 3080 JASO 3085 JASO 3090 JASO 3095 JASO 3100 JASO 3112 JASO 3112 JASO 3112 JASO 3125 JASO 3140 JASO 3150	50.3 53.3 56.3 60.3 63.3 67.3 71.3 75.3 80.3 85.3 90.3 95.3 100.3 112.3 118.3 125.3 132.3 140.3 150.3	50 53 56 60 63 67 71 75 80 85 90 95 100 106 112 118 125 132 140 150	0 -0.10	56 59 62 66 69 73 77 81 86 91 96 101 106 112 118 124 131 138 146 156	55.7 58.7 61.7 65.7 68.7 72.7 76.7 80.7 85.7 90.7 95.7 100.7 111.7 117.7 123.7 130.7 137.7 145.7 155.7	+0.10	4.7	6.0	7.8	0.08	0.7
4種C·E、5種 ±1.80																		

注1) 平面固定用において、外圧が加わる場合は、Oリングの内周が溝の内壁に密着するように設計し、 内圧が加わる場合には反対にOリングの外周が溝の外壁に密着するように設計してください。


²⁾ 偏心量 E は、寸法 K の最大値と最小値の差を意味し、同軸度の2倍となります。

材料: JIS NBR-70-1、NBR-90、FKM-70

■ Oリングの形状・寸法 (単位:mm)

■ 溝部の形状 (単位:mm)

0リング	の太さ	隅の丸み
d	2	r_1
を超え	以下	最大
_	3.00	0.4
3.00	6.98	8.0

1) 満深さ K h 寸法は、0リングのつぶし率が8~30%になるようにしてください。

つぶし率= $\frac{d_2-h}{d_2}$ ×100 (%)=8 (%)~30 (%)

K 寸法は、すきまの2倍(直径値)が図2.5.2の値を超えないようにしてください。その結果、K=h-すきま d2:0リングの太さ
 2) 溝幅 b b 寸法は、充てん率が90%以下になるようにしてください。

充てん率= $\frac{\pi \times (d_2/2)^2}{b \times h} \times 100$ (%) < 90 (%)

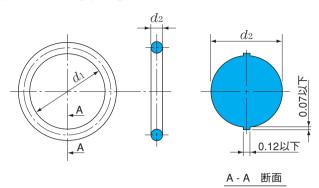
d_2 1.02~(1.78)

2 1 4	
早111	mm

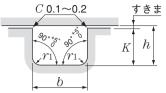
	Oリングの寸法		呼び番号	参考呼び番号
太さ d ₂		d_1	一 呼び番号	AS 28775A
1.02±0.07	0.74	±0.10	AS 001	
1.27 ± 0.07	1.07	±0.10	AS 002	
1.42±0.07	4.70	±0.12	AS 901	
1.52±0.07	1.42	±0.10	AS 003	
1.63±0.07	6.07		AS 902	
	7.64	±0.12	AS 903	
1.78±0.07	1.78		AS 004	
	2.57		AS 005	
	2.90	1	AS 006	
	3.68		AS 007	
	4.47		AS 008	
	5.28		AS 009	
	6.07		AS 010	
	7.65	±0.12	AS 011	
	9.25		AS 012	
	10.82		AS 013	
	12.42		AS 014	
	14.00		AS 015	
	15.60		AS 016	
	17.17		AS 017	
	18.77		AS 018	
	20.35		AS 019	
	21.95		AS 020	
	23.52		AS 021	
	25.12		AS 022	
	26.70	10.15	AS 023	
	28.30	±0.15	AS 024	
	29.87		AS 025	
	31.47		AS 026	
	33.05		AS 027	
	34.65		AS 028	
	37.82		AS 029	
	41.00		AS 030	
	44.17		AS 031	
	47.35		AS 032	
	50.52	±0.25	AS 033	
	53.70		AS 034	
	56.87		AS 035	
	60.05		AS 036	
	63.22		AS 037	

注1) 内径d1の許容差は、材料にJIS B 2401 におけるNBR-70-1、NBR-90を用いたときの許容差を示します。 FKM-70の場合はJTEKTにご相談ください。

 d_2 (1.78)~(2.62)


224	/	
毋.	11/	m

	Oリングの寸法		NTC 7 ℃ ▼ □	参考呼び番号
太さ d ₂	内径	$d{\scriptstyle ext{1}^{^{1)}}}$	一呼び番号	AS 28775A
1.78±0.07	66.40	±0.25	AS 038	
10=0.07	69.57		AS 039	
	72.75		AS 040	
	75.92		AS 041	
	82.27		AS 042	
	88.62	± 0.38	AS 043	
	94.97		AS 044	
	101.32		AS 045	
	107.67		AS 046	
	114.02		AS 047	
	120.37		AS 048	
	126.72	±0.58	AS 049	
	133.07	⊥0.56	AS 050	
1.83±0.07	8.92		AS 904	
	10.52		AS 905	
1.98±0.07	11.89		AS 906	
2.08±0.07	13.46	±0.12	AS 907	
2.21±0.07	16.36	±0.12	AS 908	
2.46±0.07	17.93		AS 909	
2.40±0.07	19.18		AS 910	
2.62±0.07	1.24			
2.02±0.07			AS 102	
	2.06		AS 103	
	2.84		AS 104	
	3.63		AS 105	
	4.42		AS 106	
	5.23		AS 107	
	6.02	±0.12	AS 108	
	7.59		AS 109	
	9.19		AS 110	
	10.77		AS 111	
	12.37		AS 112	
	13.94		AS 113	
	15.54		AS 114	
	17.12		AS 115	
	18.72		AS 116	
	20.29		AS 117	
	21.89		AS 117	
	I I			
	23.47 25.07		AS 119	
			AS 120	
	26.64		AS 121	
	28.24	± 0.15	AS 122	
	29.82		AS 123	
	31.42		AS 124	
	32.99		AS 125	
	34.59		AS 126	
	36.17		AS 127	
	37.77		AS 128	
	39.34		AS 129	
	40.94		AS 130	
	42.52		AS 131	
	44.12		AS 132	
	45.69		AS 133	
	47.29	± 0.25	AS 134	
				-
	48.90		AS 135	
	50.47		AS 136	
	52.07		AS 137	
	53.64		AS 138	



材料: JIS NBR-70-1、NBR-90、FKM-70

■ Oリングの形状・寸法 (単位:mm)

■ 溝部の形状 (単位:mm)

0リング	の太さ	隅の丸み
d	2	r_1
を超え	以下	最大
_	3.00	0.4
3.00	6.98	0.8

1) 満深さ K h 寸法は、0リングのつぶし率が8~30%になるようにしてください。

つぶし率= $\frac{d_2-h}{d_2}$ ×100 (%)=8 (%)~30 (%)

K 寸法は、すきまの2倍(直径値)が図2.5.2の値を超えないようにしてください。 その結果、K=h-すきま

 d_2 : 0リングの太さ 2) 溝幅 b b 寸法は、充てん率が90%以下になるようにしてください。

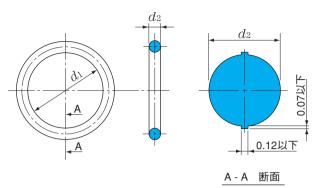
充てん率= $\frac{\pi \times (d_2/2)^2}{b \times h} \times 100$ (%) < 90 (%)

 d_2 (2.62)

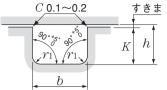
単位:mm

	Oリングの寸法		呼び番号	参考呼び番号
太さ d ₂		径 d1 ¹⁾	竹〇笛写	AS 28775A
2.62±0.07	55.24		AS 139	
	56.82		AS 140	
	58.42		AS 141	
	59.99	1.0.25	AS 142	
	61.60	±0.25	AS 143	
	63.17		AS 144	
	64.77		AS 145	
	66.34		AS 146	
	67.94		AS 147	
	69.52		AS 148	
	71.12		AS 149	
	72.69		AS 150	
	75.87		AS 151	
	82.22		AS 152	
	88.57	±0.38	AS 153	
	94.92		AS 154	
	101.27		AS 155	
	107.62		AS 156	
	113.97		AS 157	
	120.32		AS 158	
	126.67		AS 159	
	133.02		AS 160	
	139.37		AS 161	
	145.72		AS 162	
	152.07	10.50	AS 163	
	158.42	±0.58	AS 164	
	164.77		AS 165	
	171.12		AS 166	
	177.47		AS 167	
	183.82		AS 168	
	190.17		AS 169	
	196.52		AS 170	
	202.87		AS 171	
	209.22		AS 172	
	215.57	±0.76	AS 173	
	221.92		AS 174	
	228.27		AS 175	
	234.62		AS 176	
	240.97		AS 177	
	247 32		AS 178	

注1) 内径d1の許容差は、材料にJIS B 2401 におけるNBR-70-1、NBR-90を用いたときの許容差を示します。 FKM-70の場合はJTEKTにご相談ください。


 d_2 2.95~(3.53)

出冶	•	m


$d_2 = 2.95 \sim (3.5)$	<u>O</u> リングの寸法			単位:mn 参考呼び番号
太さ d ₂		₹ d1 ¹⁾	一 呼び番号	多5吋0番5 AS 28775A
2.95±0.10	21.92	±0.12	AS 911	A3 20773A
2.95±0.10	23.47	±0.12		_
			AS 912	
	25.04		AS 913	
	26.59	±0.15	AS 914	
	29.74		AS 916	
	34.42		AS 918	
3.00±0.10	37.46		AS 920	
	43.69		AS 924	
	53.09	±0.25	AS 928	
	59.36		AS 932	
3.53±0.10	4.34		AS 201	
5.55±0.10	5.94		AS 202	
	7.52			
			AS 203	
	9.12	1010	AS 204	
	10.69	±0.12	AS 205	
	12.29		AS 206	
	13.87		AS 207	
	15.47		AS 208	
	17.04	AS	AS 209	
	18.64		AS 210	
	20.22		AS 211	
	21.82		AS 212	
	23.39		AS 213	
	24.99			
			AS 214	
	26.57	±0.15	AS 215	
	28.17		AS 216	
	29.74		AS 217	
	31.34		AS 218	
	32.92		AS 219	
	34.52		AS 220	
	36.09		AS 221	
	37.69		AS 222	
	40.87		AS 223	223
	44.04		AS 224	224
	47.22		AS 225	225
	50.39	1.0.05	AS 226	226
	53.57	±0.25	AS 227	227
	56.74		AS 228	228
	59.92		AS 229	229
	63.09		AS 230	230
	66.27		AS 231	231
	69.44		AS 232	232
	72.62		AS 233	233
	75.79		AS 234	234
	78.97		AS 235	235
	82.14		AS 236	236
	85.32		AS 237	237
	91.67	-		239
			AS 239	
	94.84	±0.38	AS 240	240
	98.02		AS 241	241
	101.19		AS 242	242
	104.37		AS 243	243
	107.54		AS 244	244
	110.72		AS 245	245
	113.89		AS 246	246
	117.07		AS 247	247
	120.24		AS 248	248
	120.24	1	AU 270	270

材料: JIS NBR-70-1、NBR-90、FKM-70

■ Oリングの形状・寸法 (単位:mm)

■ 溝部の形状 (単位:mm)

0リングの太さ		隅の丸み
d	2	r_1
を超え	以下	最大
_	3.00	0.4
3.00	6.98	0.8

1) 満深さ K h 寸法は、0リングのつぶし率が8~30%になるようにしてください。

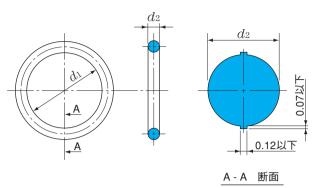
つぶし率= $\frac{d_2-h}{d_2}$ ×100 (%) =8 (%) ~30 (%)

充てん率= $\frac{\pi \times (d_2/2)^2}{b \times h} \times 100$ (%) < 90 (%)

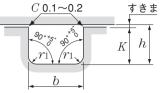
d_2 (3.53)~(5.33)

単位:mm

	Oリングの寸法		11.7.1.********************************	参考呼び番号
太さ d ₂	内径	$d_1^{1)}$	呼び番号	AS 28775A
3.53±0.10	123.42		AS 249	249
	126.59	±0.38	AS 250	250
	129.77		AS 251	251
	132.94		AS 252	252
	136.12		AS 253	253
	139.29		AS 254	254
	142.47		AS 255	255
	145.64	10.50	AS 256	256
	148.82	±0.58	AS 257	257
	151.99		AS 258	258
	158.34		AS 259	259
	164.69		AS 260	260
	171.04		AS 261	261
	177.39		AS 262	262
	183.74		AS 263	263
	190.09		AS 264	264
	196.44		AS 265	265
	202.79		AS 266	266
	209.14		AS 267	267
	215.49		AS 268	268
	221.84		AS 269	269
	228.19		AS 270	270
	234.54		AS 271	271
	240.89	±0.76	AS 272	272
	247.24		AS 273	273
	253.59		AS 274	274
	266.29		AS 275	
	278.99		AS 276	
	291.69		AS 277	
	304.39		AS 278	
	329.79		AS 279	
	355.19		AS 280	
	380.59		AS 281	
	405.26		AS 282	
	430.66	±1.14	AS 283	
	456.06		AS 284	
5.33±0.12	10.46		AS 309	
	12.06	1010	AS 310	
	13.64	±0.12	AS 311	
	15.24		AS 312	


注1) 内径 d_1 の許容差は、材料にJIS B 2401 におけるNBR-70-1、NBR-90を用いたときの許容差を示します。 FKM-70の場合はJTEKTにご相談ください。

d_2 (5.33)				単位:mm
()	Oリングの寸法		11元 7 火五 口	参考呼び番号
太さ d_2	内征	$\stackrel{>}{\stackrel{>}{\stackrel{>}{\stackrel{>}}{\stackrel{>}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}{\stackrel{>}}{}{\stackrel{>}}{}}{}{}{}{}}{}{}{}}{}{}}{}{}{}{}{}{}}{}{}}{$	呼び番号	AS 28775A
5.33 ± 0.12	16.81	±0.12	AS 313	
	18.42		AS 314	
	19.99		AS 315	
	21.59		AS 316	
	23.16		AS 317	
	24.76		AS 318	
	26.34	±0.15	AS 319	
	27.94		AS 320	
	29.51 31.12		AS 321	
	32.69		AS 322 AS 323	
	34.29		AS 324	
	37.46		AS 325	
	40.64		AS 326	
	43.82		AS 327	
	46.99		AS 328	
	50.16		AS 329	
	53.34	±0.25	AS 330	
	56.52		AS 331	
	59.69		AS 332	
	62.86		AS 333	
	66.04		AS 334	
	69.22		AS 335	
	72.39		AS 336	
	75.56		AS 337	
	78.74		AS 338	
	81.92		AS 339	
	85.09	_	AS 340	
	88.26		AS 341	
	91.44		AS 342	
	94.62		AS 343	
	97.79	±0.38	AS 344	
	100.96		AS 345	
	104.14		AS 346	
	107.32		AS 347	
	110.49		AS 348	
	113.66 116.84		AS 349 AS 350	
	120.02		AS 351	
	123.19		AS 351	
	126.36		AS 353	
	129.54		AS 354	
	132.72		AS 355	
	135.89		AS 356	
	139.07		AS 357	
	142.24		AS 358	
	145.42	±0.50	AS 359	
	148.59	±0.58	AS 360	
	151.77		AS 361	
	158.12		AS 362	
	164.47		AS 363	
	170.82		AS 364	
	177.17		AS 365	
	183.52		AS 366	
	189.87	±0.76	AS 367	
	196.22		AS 368	
	202.57		AS 369	


航空機油圧用(運動用/固定用) AS 568

材料: JIS NBR-70-1、NBR-90、FKM-70

■ Oリングの形状・寸法 (単位:mm)

■ 溝部の形状 (単位:mm)

0リングの太さ 隅の丸み γ_1 を超え 以下 3.00 0.4 3.00 6.98 0.8

1) 満深さ K h 寸法は、0リングのつぶし率が8~30%になるようにしてください。

つぶし率= $\frac{d_2-h}{d_2}$ ×100 (%)=8 (%)~30 (%)

K 寸法は、すきまの2倍(直径値)が図2.5.2の値を超えないようにしてください。 その結果、K=h-すきま

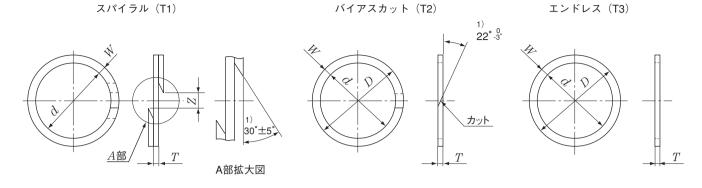
d2: 0リングの太さ

満幅 b b 寸法は、充てん率が90%以下になるようにしてください。

充てん率= $\frac{\pi \times (d_2/2)^2}{b \times h} \times 100$ (%) < 90 (%)

d_2 (5.33)~(6.98)

単位:mm


	Oリングの寸法		110.715来早	参考呼び番号
太さ d ₂	内径	$d_1^{(1)}$	呼び番号	AS 28775A
5.33±0.12	208.92		AS 370	
	215.26		AS 371	
	221.62		AS 372	
	227.96		AS 373	
	234.32		AS 374	
	240.67		AS 375	
	247.02		AS 376	
	253.37	±0.76	AS 377	
	266.07		AS 378	
	278.77		AS 379	
	291.47		AS 380	
	304.17		AS 381	
	329.57		AS 382	
	354.97		AS 383	
	380.37		AS 384	
	405.26		AS 385	
	430.66		AS 386	
	456.06		AS 387	
	481.46	±1.14	AS 388	
	506.86		AS 389	
	532.26		AS 390	
	557.66		AS 391	
	582.68		AS 392	
	608.08	±1.52	AS 393	
	633.48	⊥1.52	AS 394	
	658.88		AS 395	
6.98 ± 0.15	113.66		AS 425	
	116.84		AS 426	
	120.02	±0.38	AS 427	
	123.19		AS 428	
	126.36		AS 429	
	129.54		AS 430	
	132.72		AS 431	
	135.89		AS 432	
	139.06		AS 433	
	142.24	±0.58	AS 434	
	145.42		AS 435	
	148.59		AS 436	
	151.76		AS 437	
	158.12		AS 438	

注1) 内径d1の許容差は、材料にJIS B 2401 におけるNBR-70-1、NBR-90を用いたときの許容差を示します。 FKM-70の場合はJTEKTにご相談ください。

	Oリングの寸法		10.7%至口	参考呼び番号
太さ d_2	内径	$d_1^{^{1)}}$	呼び番号	AS 28775
6.98±0.15	164.46		AS 439	
	170.82	±0.58	AS 440	
	177.16		AS 441	
	183.52		AS 442	
	189.86		AS 443	
	196.22		AS 444	
	202.56		AS 445	
	215.26		AS 446	
	227.96		AS 447	
	240.66		AS 448	
	253.36		AS 449	
	266.06		AS 450	
	278.76	±0.76	AS 451	
	291.46		AS 452	
	304.16		AS 453	
	316.86		AS 454	
	329.56		AS 455	
	342.26		AS 456	
	354.96		AS 457	
	367.66		AS 458	
	380.36		AS 459	
	393.06		AS 460	
	405.26		AS 461	
	417.96		AS 462	
	430.66		AS 463	
	443.36		AS 464	
	456.06		AS 465	
	468.76	± 1.14	AS 466	
	481.46		AS 467	
	494.16		AS 468	
	506.86		AS 469	
	532.46		AS 470	
	557.66		AS 471	
	582.68		AS 472	
	608.08	±1.52	AS 473	
	633.48 658.88		AS 474 AS 475	

■ バックアップリングの形状・寸法

備考)材料はすべて、四ふっ化エチレン樹脂になります。

P 3~34 単位:mm

_	1 0						= □ · 11Ⅲ1							
	適用する			スパイラ	ル				'スカッ	トおよびエ	ンドレ	ス2)		
(コリングの	10元7以五二			寸法		呼び	番号			寸法			
	呼び番号	呼び番号	d	$W^{^{3)}}$	T	$Z^{\scriptscriptstyle 4)}$	バイアスカット	エンドレス		d		D	T	
	P 3	T1 P 3	3				T2 P 3	T3 P 3	3		6			
	P 4	T1 P 4	4		0.7±0.05		T2 P 4	T3 P 4	4		7			
	P 5	T1 P 5	5				T2 P 5	T3 P 5	5		8			
	P 6	T1 P 6	6	1 5 +0.03		1.2±0.4	T2 P 6	T3 P 6	6		9			
	P 7	T1 P 7	7	$1.5^{+0.03}_{-0.06}$	0.7±0.03	1.2±0.4	T2 P 7	T3 P 7	7		10			
	P 8	T1 P 8	8				T2 P 8	T3 P 8	8		11			
	P 9	T1 P 9	9				T2 P 9	T3 P 9	9		12			
	P 10	T1 P 10	10				T2 P 10	T3 P 10	10		13			
	P 10A	T1 P 10A	10				T2 P 10A	T3 P 10A	10		14			
	P 11	T1 P 11	11				T2 P 11	T3 P 11	11	+0.15	15	0	1 25 1	
	P 11.2	T1 P 11.2	11.2				T2 P 11.2	T3 P 11.2	11.2	0	15.2	-0.15	1.25±0.1	
	P 12	T1 P 12	12				T2 P 12	T3 P 12	12		16			
	P 12.5	T1 P 12.5	12.5			1.4±0.8	T2 P 12.5	T3 P 12.5	12.5		16.5			
	P 14	T1 P 14	14	2.0+0.03	0.7±0.05		T2 P 14	T3 P 14	14		18			
	P 15	T1 P 15	15	$2.0^{+0.03}_{-0.06}$			T2 P 15	T3 P 15	15		19			
	P 16	T1 P 16	16				T2 P 16	T3 P 16	16		20			
	P 18	T1 P 18	18				T2 P 18	T3 P 18	18		22			
	P 20	T1 P 20	20				T2 P 20	T3 P 20	20		24			
	P 21	T1 P 21	21				T2 P 21	T3 P 21	21		25			
	P 22	T1 P 22	22				T2 P 22	T3 P 22	22		26			
	P 22A	T1 P 22A	22				T2 P 22A	T3 P 22A	22		28			
	P 22.4	T1 P 22.4	22.4				T2 P 22.4	T3 P 22.4	22.4		28.4			
	P 24	T1 P 24	24				T2 P 24	T3 P 24	24		30			
	P 25	T1 P 25	25				T2 P 25	T3 P 25	25		31			
	P 25.5	T1 P 25.5	25.5				T2 P 25.5	T3 P 25.5	25.5		31.5			
	P 26	T1 P 26	26				T2 P 26	T3 P 26	26		32			
	P 28	T1 P 28	28	2 0+0.03	0.710.05	0 5 1 1 5	T2 P 28	T3 P 28	28	+0.20	34	0	1 05 0 1	
	P 29	T1 P 29	29	$3.0^{+0.03}_{-0.06}$	0.7±0.05	2.5±1.5	T2 P 29	T3 P 29	29	0	35	-0.20	1.25±0.1	
	P 29.5	T1 P 29.5	29.5				T2 P 29.5	T3 P 29.5	29.5		35.5			
	P 30	T1 P 30	30				T2 P 30	T3 P 30	30		36			
	P 31	T1 P 31	31				T2 P 31	T3 P 31	31		37			
	P 31.5	T1 P 31.5	31.5				T2 P 31.5	T3 P 31.5	31.5		37.5			
	P 32	T1 P 32	32				T2 P 32	T3 P 32	32		38			
	P 34	T1 P 34	34				T2 P 34	T3 P 34	34		40			

- 注1) P 3~P 10のカットの角度は 40°_0° になります。
- 2) バイアスカットおよびエンドレスの項の寸法は、エンドレスの寸法を表します。 バイアスカットは、エンドレスをカットしています。
- 3) バイアスカットおよびエンドレスの場合、 1 個内の W の最大値と最小値との差は、最大0.05mmとします。

P 35~165

単位:mm

P 30	<u>حورا ~ر</u>					単位:mm バイアスカットおよびエンドレス ²⁾							
適用する			スパイラ					<u>'スカッ</u>	トおよびエ	ニンドレ	ス"		
ロリングの	 呼び番号			寸法		呼び	番号			寸法			
呼び番号	一叶〇田勺	d	$W^{\scriptscriptstyle 3)}$	T	$Z^{\scriptscriptstyle 4)}$	バイアスカット	エンドレス		d		D	T	
P 35	T1 P 35	35				T2 P 35	T3 P 35	35		41			
P 35.5	T1 P 35.5	35.5				T2 P 35.5	T3 P 35.5	35.5		41.5			
P 36	T1 P 36	36				T2 P 36	T3 P 36	36		42			
P 38	T1 P 38	38				T2 P 38	T3 P 38	38		44			
P 39	T1 P 39	39				T2 P 39	T3 P 39	39		45		1.25±0.1	
P 40	T1 P 40	40				T2 P 40	T3 P 40	40	1020	46			
P 41	T1 P 41	41	$3.0^{+0.03}_{-0.06}$	0.7±0.05	2.5±1.5	T2 P 41	T3 P 41	41	+0.20	47	0		
P 42	T1 P 42	42	-0.06			T2 P 42	T3 P 42	42	0	48	-0.20		
P 44	T1 P 44	44				T2 P 44	T3 P 44	44		50			
P 45	T1 P 45 T1 P 46	45 46				T2 P 45 T2 P 46	T3 P 45 T3 P 46	45 46		51 52			
P 46 P 48	T1 P 48	48				T2 P 48	T3 P 48	48		54			
P 49	T1 P 49	49				T2 P 49	T3 P 49	49		55			
P 50	T1 P 50	50				T2 P 50	T3 P 50	50		56			
P 48A	T1 P 48A	48				T2 P 48A	T3 P 48A	48		58			
P 50A	T1 P 50A	50				T2 P 50A	T3 P 50A	50	-	60			
P 52	T1 P 52	52				T2 P 52	T3 P 52	52		62			
P 53	T1 P 53	53	1			T2 P 53	T3 P 53	53		63			
P 55	T1 P 55	55				T2 P 55	T3 P 55	55		65			
P 56	T1 P 56	56				T2 P 56	T3 P 56	56		66			
P 58	T1 P 58	58				T2 P 58	T3 P 58	58		68			
P 60	T1 P 60	60				T2 P 60	T3 P 60	60		70			
P 62	T1 P 62	62				T2 P 62	T3 P 62	62		72			
P 63	T1 P 63	63				T2 P 63	T3 P 63	63		73		1.9±0.13	
P 65	T1 P 65	65				T2 P 65	T3 P 65	65		75			
P 67	T1 P 67	67				T2 P 67	T3 P 67	67		77			
P 70	T1 P 70	70				T2 P 70	T3 P 70	70		80			
P 71	T1 P 71 T1 P 75	71 75				T2 P 71 T2 P 75	T3 P 71 T3 P 75	71 75		81 85			
P 75 P 80	T1 P 80	80				T2 P 80	T3 P 80	80		90			
P 85	T1 P 85	85	$5.0^{+0.03}_{-0.06}$	0.9±0.06	4.5±1.5	T2 P 85	T3 P 85	85	+0.25	95	0		
P 90	T1 P 90	90	0.06	0.9±0.00	4.5 1.5	T2 P 90	T3 P 90	90	0	100	-0.25		
P 95	T1 P 95	95				T2 P 95	T3 P 95	95		105			
P 100	T1 P 100	100				T2 P 100	T3 P 100	100		110			
P 102	T1 P 102	102				T2 P 102	T3 P 102	102		112			
P 105	T1 P 105	105				T2 P 105	T3 P 105	105		115	†		
P 110	T1 P 110	110				T2 P 110	T3 P 110	110		120			
P 112	T1 P 112	112				T2 P 112	T3 P 112	112		122			
P 115	T1 P 115	115				T2 P 115	T3 P 115	115		125			
P 120	T1 P 120	120				T2 P 120	T3 P 120	120		130			
P 125	T1 P 125	125				T2 P 125	T3 P 125	125		135			
P 130	T1 P 130	130				T2 P 130	T3 P 130	130		140			
P 132	T1 P 132	132				T2 P 132	T3 P 132	132		142			
P 135	T1 P 135	135				T2 P 135	T3 P 135	135		145			
P 140 P 145	T1 P 140 T1 P 145	140 145				T2 P 140 T2 P 145	T3 P 140 T3 P 145	140 145		150 155			
P 145 P 150	T1 P 145	150				T2 P 145	T3 P 145	150		160			
P 150A	T1 P 150A	150				T2 P 150A	T3 P 150A	150		165			
P 155A	T1 P 155	155				T2 P 155	T3 P 155	155	+0.30	170	0		
P 160	T1 P 160	160	$7.5^{+0.03}_{-0.06}$	1.4±0.08	6.0±2.0	T2 P 160	T3 P 160	160	0.30	175	-0.30	2.75±0.15	
P 165	T1 P 165	165				T2 P 165	T3 P 165	165		180	3.00		
1 103	111 100	100	<u> </u>	l .	<u> </u>	121 100	.0.1 100	100	<u> </u>	100		1	

⁴⁾ Z は、(軸径の基準寸法) $_{-\text{O.O5}}^{\text{O}}$ の軸に取付けたときのすきま値です。

■ バックアップリングの形状・寸法

スパイラル (T1) バイアスカット (T2) エンドレス (T3)

A部拡大図

備考) 材料はすべて、四ふっ化エチレン樹脂になります。

P 170~360

単位:mm

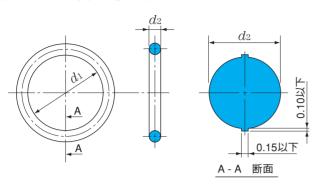
適用する			スパイラ	ル		バイアスカットおよびエンドレス ²⁾							
ロリングの	n=: = \(\) = =			寸法		呼び	番号			寸法			
呼び番号	呼び番号	d	$W^{^{3)}}$	T	$Z^{^{4)}}$	バイアスカット エンドレス			d		D	T	
P 170	T1 P170	170				T2 P 170	T3 P 170	170		185			
P 175	T1 P175	175				T2 P 175	T3 P 175	175		190			
P 180	T1 P180	180				T2 P 180	T3 P 180	180		195			
P 185	T1 P185	185				T2 P 185	T3 P 185	185		200			
P 190	T1 P190	190				T2 P 190	T3 P 190	190		205			
P 195	T1 P195	195				T2 P 195	T3 P 195	195		210	0 -0.30		
P 200	T1 P200	200				T2 P 200	T3 P 200	200		215			
P 205	T1 P205	205				T2 P 205	T3 P 205	205		220			
P 209	T1 P209	209				T2 P 209	T3 P 209	209		224			
P 210	T1 P210	210				T2 P 210	T3 P 210	210		225			
P 215	T1 P215	215				T2 P 215	T3 P 215	215		230		2.75±0.15	
P 220	T1 P220	220				T2 P 220	T3 P 220	220		235			
P 225	T1 P225	225			6.0±2.0	T2 P 225	T3 P 225	225		240			
P 230	T1 P230	230		1.4±0.08		T2 P 230	T3 P 230	230		245			
P 235	T1 P235	235				T2 P 235	T3 P 235	235		250			
P 240	T1 P240	240				T2 P 240	T3 P 240	240		255			
P 245	T1 P245	245	$7.5^{+0.03}_{-0.06}$			T2 P 245	T3 P 245	245	+0.30	260			
P 250	T1 P250	250	7.5-0.06	1.4±0.00		T2 P 250	T3 P 250	250	0	265			
P 255	T1 P255	255				T2 P 255	T3 P 255	255		270			
P 260	T1 P260	260				T2 P 260	T3 P 260	260		275			
P 265	T1 P265	265				T2 P 265	T3 P 265	265		280			
P 270	T1 P270	270				T2 P 270	T3 P 270	270		285			
P 275	T1 P275	275				T2 P 275	T3 P 275	275		290			
P 280	T1 P280	280				T2 P 280	T3 P 280	280		295			
P 285	T1 P285	285				T2 P 285	T3 P 285	285		300			
P 290	T1 P290	290				T2 P 290	T3 P 290	290		305			
P 295	T1 P295	295				T2 P 295	T3 P 295	295		310			
P 300	T1 P300	300				T2 P 300	T3 P 300	300		315			
P 315	T1 P315	315 320				T2 P 315 T2 P 320	T3 P 315	315 320		330 335			
P 320	T1 P320						T3 P 320	335					
P 335	T1 P335 T1 P340	335 340				T2 P 335 T2 P 340	T3 P 335 T3 P 340	340		350 355			
P 340 P 355	T1 P340 T1 P355	355				T2 P 340	T3 P 340	355		370			
		360						360		375			
P 360	T1 P360	300				T2 P 360	T3 P 360	300		3/3		<u> </u>	

- 注1) P 3~P 10のカットの角度は 40°_0° になります。
- 2) バイアスカットおよびエンドレスの項の寸法は、エンドレスの寸法を表します。 バイアスカットは、エンドレスをカットしています。
- 3) バイアスカットおよびエンドレスの場合、1個内のWの最大値と最小値との差は、最大0.05mmとします。

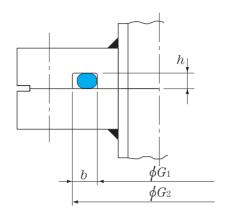
P 375~400 G 25~300

単位:mm

可能	適用する			スパイラ	ル		バイアスカットおよびエンドレス゜							
野び番号 野び番号 d							呼び							
P 375		呼び番号	d			$Z^{^{4)}}$				\overline{d}			T	
P 400	P 375	T1 P 375	375						375		390			
G 25 Ti G 25 Z5 C 30 Ti G 30 30 C 35 Ti G 30 Ti Ti G 30 Ti Ti G 30 Ti Ti G 30 Ti			385	$7.5^{+0.03}_{-0.06}$	1.4±0.08	6.0±2.0	T2 P 385	T3 P 385		_			2.75±0.15	
G 30	P 400	T1 P 400	400	-0.00			T2 P 400	T3 P 400	400	0	415	0.30		
G 35	G 25	T1 G 25	25				T2 G 25	T3 G 25	25		30			
C 40	G 30		1						30		35			
G 45 11 G 45 45 45 6 50 T1 G 45 45 50 12 G 50 55 55 60 12 G 50 55 60 12 G 50 55 60 72 G 55 13 G 45 45 50 55 60 72 G 55 13 G 55 55 60 60 65 71 G 65 65 71 G 70 70 75 77 75 680 71 G 80 90 90 90										+0.20			1 25+0 1	
G 50			1							0		-0.20	1.25±0.1	
G 55														
To be compared to the compar				_										
C 65			1											
T2 G 70			1							-				
T				-										
G 80 T1 G 80 80 C 85 T1 G 85 85 C 90 T1 G 85 85 G 90 T1 G 90 90 95 T2 G 85 T3 G 85 85 90 95 95 95 T1 G 100 100 100 10 G 105 11 G 100 100			1											
G 85 T1 G 85 85 2.5 ^{+0.06} _{-0.06} 0.7±0.05 4.5±1.5 T2 G 85 T3 G 85 85 90 90 90 90 90 90 95 T1 G 90 90 95 T1 G 95 95 100													1.25±0.1	
G 95 T1 G 95 95 T6 G 95 95 T1 G 95 95 100				2.5 +0.03	0.7+0.05	4.5±1.5						0		
C 95				-0.06	0.7 = 0.00	1.0								
G 100 T1 G 105 105 T1 G 105 105 T1 G 105 105 T1 G 105 105 110 105 110 -0.25 1.23 Ed G 110 T1 G 110 110 T2 G 110 T3 G 110 110 115 115 115 115 120 </th <th></th> <th></th> <th>1</th> <th></th> <th rowspan="5"></th> <th></th> <th></th> <th></th> <th></th> <th></th>			1											
Carrell	G 100	T1 G 100	100				T2 G 100	T3 G 100	100		105			
G 115 T1 G 115 11 G 115 11 G 115 11 G 120 120 120 120 120 120 120 120 120 125 125 125 130 120 125 130 130 135 135 135 140 140 130 135 135 140 140 140 145 145 140 145 140 145 145 140 145 145 150 140 145 145 150 140 145 145 150 140 145 145 150 140 145 145 150 140 145 145 150 140 145 145 150 140 140 145 145 150 140 140 145 145 150 160 145 145 150 160 145 145 150 160 145 145 150 160 160 170 171 175 161 170 </th <th>G 105</th> <th>T1 G 105</th> <th>105</th> <th></th> <th>T2 G 105</th> <th>T3 G 105</th> <th>105</th> <th>110</th> <th>0.23</th>	G 105	T1 G 105	105				T2 G 105	T3 G 105	105		110	0.23		
G 120 T1 G 120 120 G 125 T1 G 125 125 G 130 T1 G 130 130 G 135 T1 G 130 130 G 136 T1 G 130 130 G 137 T1 G 130 130 G 136 T1 G 140 140 G 140 T1 G 145 145 G 150 T1 G 150 150 G 150 T1 G 150 150 G 155 T1 G 160 160 G 155 T1 G 160 160 G 165 T1 G 175 175 165 G 170 T1 G 175 175 165 172 G 180 T3 G 180 180 G 180 T1 G 180 180 180 180 180 180 180 G 185 T1 G 180 180 180 180 180 180 190 G 185 T1 G 180 180 180 180 180 180 195 G 195 T1 G 190 190 190														
G 125 T1 G 125 125 T2 G 125 T3 G 125 125 130 130 135 135 135 135 140 135 140 135 140 145 145 140 145 140 145 140 140 145 140 145 140 145 140 140 145 145 140 145 145 140 145 145 150 160 140 140 145 145			1											
G 130 T1 G 130 130 T2 G 130 T3 G 130 130 135 140 135 140 140 145 145 145 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 165 150 150														
G 135 T1 G 135 135 T2 G 135 T3 G 135 135 140 140 145 140 145 145 140 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 150 145 140 145 145 145 145 145 140 145 145 140 140 145 140 140 145 145 150 150 150 150 150 150 150 150 160 150 150 150 150 160 170 170 170 170				-										
G 140 T1 G 140 140 T2 G 140 T3 G 140 140 145 145 150 G 150 T1 G 150 150 T2 G 145 T3 G 145 145 150 160 150 160 150 160 160 160 160 160 160 160 160 160 160 170 170 170 170 170 170 170 170 170 170 170 170 175 175 175 175 175 175 175 175 175 175 175 180 180 185 190 170 180 185 190 170 180 190														
G 145 T1 G 145 145 T2 G 145 T3 G 145 145 150 G 150 T1 G 150 150 120 150 150 160 G 155 T1 G 155 155 165 155 165 165 G 160 T1 G 160 160 170 160 170 G 165 T1 G 165 165 12 G 160 13 G 160 160 170 G 170 T1 G 170 170 170 170 170 170 180 G 175 T1 G 175 175 175 12 G 175 13 G 175 175 185 G 180 T1 G 180 180 180 12 G 180 13 G 180 180 190 G 195 T1 G 190 190														
G 150 T1 G 150 150 T2 G 150 T3 G 150 150 160 160 160 165 165 165 165 165 165 170 160 165 165 170 170 170 170 170 175 175 175 175 175 175 175 175 175 175 175 180 185 185 185 185 185 185 185 185 185 185 190 170 180 180 180 180 185 185 185 185 185 185 185 190 180 180 185 195 195 195 195 195 195 195 195 195 195 195 195 195 19														
G 155 T1 G 155 155 G 160 T1 G 160 160 165 170 165 170 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 190 190 190 172 G 180 13 G 180 180 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190														
G 160 T1 G 160 160 G 165 T1 G 165 165 G 170 T1 G 170 170 G 175 T1 G 175 175 G 180 T1 G 180 180 G 185 T1 G 185 185 G 190 T1 G 190 190 G 195 T1 G 195 195 G 200 T1 G 200 200 G 210 T1 G 210 210 G 220 T1 G 220 220 G 230 T1 G 230 230 G 240 T1 G 240 240														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				_						_				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	G 175	T1 G 175	175				T2 G 175	T3 G 175	175		185			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	G 180						T2 G 180							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
G 210 T1 G 210 210 G 220 T1 G 220 220 G 230 T1 G 230 230 G 240 T1 G 240 240 0.0 ± 2.0 12 G 200 13 G 200 200 210 220 T2 G 220 T3 G 220 220 230 240 T2 G 240 T3 G 240 240 250				+n us						+0.30		0		
G 210 11 G 210 210 G 220 T1 G 220 220 G 230 T1 G 230 230 G 240 T1 G 240 240				5.0 -0.06	0.9 ± 0.06	6.0±2.0				_			1.9±0.13	
G 230 T1 G 230 230 T2 G 230 T3 G 230 230 240 G 240 T1 G 240 240 T2 G 240 T3 G 240 240 250														
G 240 T1 G 240 240 T2 G 240 T3 G 240 240														
1 1 1 2 2 11 1 2 11 1 2 11 1 1 1 1 1 1	G 250	T1 G 240	250	-			T2 G 240	T3 G 240	250	-	260			
G 260 T1 G 260 260 T2 G 260 T3 G 260 270														
G 270 T1 G 270 270 T2 G 270 T3 G 270 280			1											
G 280 T1 G 280 280 T2 G 280 T3 G 280 290				1						1				
G 290 T1 G 290 290 T2 G 290 T3 G 290 290 300			1											
G 300 T1 G 300 300 T2 G 300 T3 G 300 310														


4) Z は、(軸径の基準寸法) $_{-0.05}^{O}$ の軸に取付けたときのすきま値です。

V 15~1 055


JIS B 2401 V (真空フランジ用)

材料: JIS NBR-70-1、NBR-90、NBR-70-2、EPDM-70、EPDM-90、VMQ-70、FKM-70、FKM-90、HNBR-70、HNBR-90、ACM-70、SBR-70(JIS規格外)

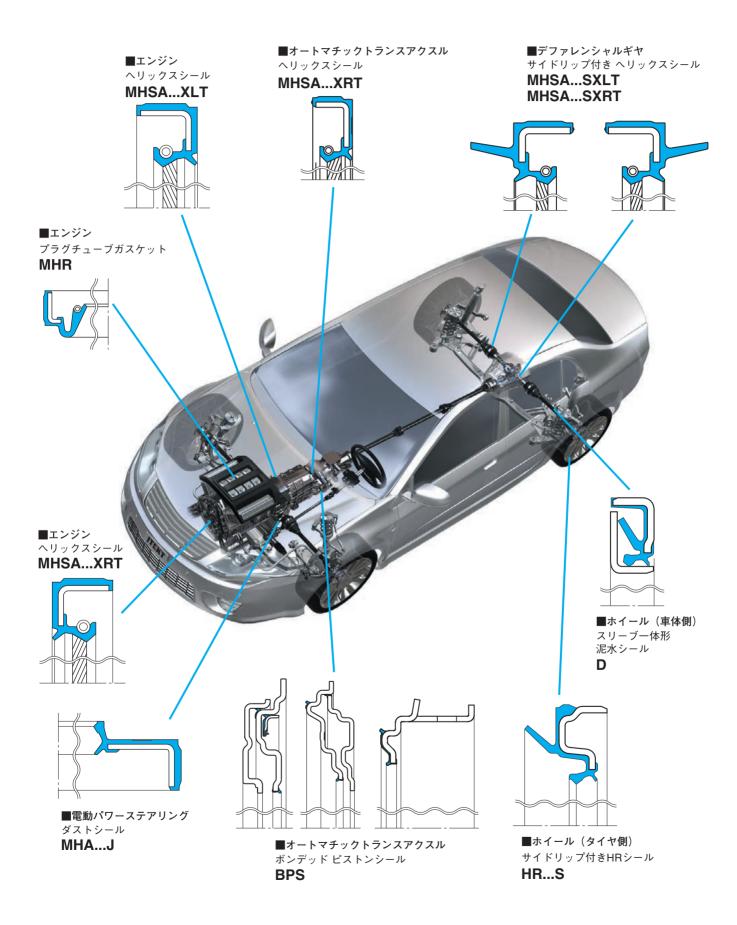
■ Oリングの形状・寸法 (単位:mm)

■ 溝部の形状・寸法

V 15~1 055

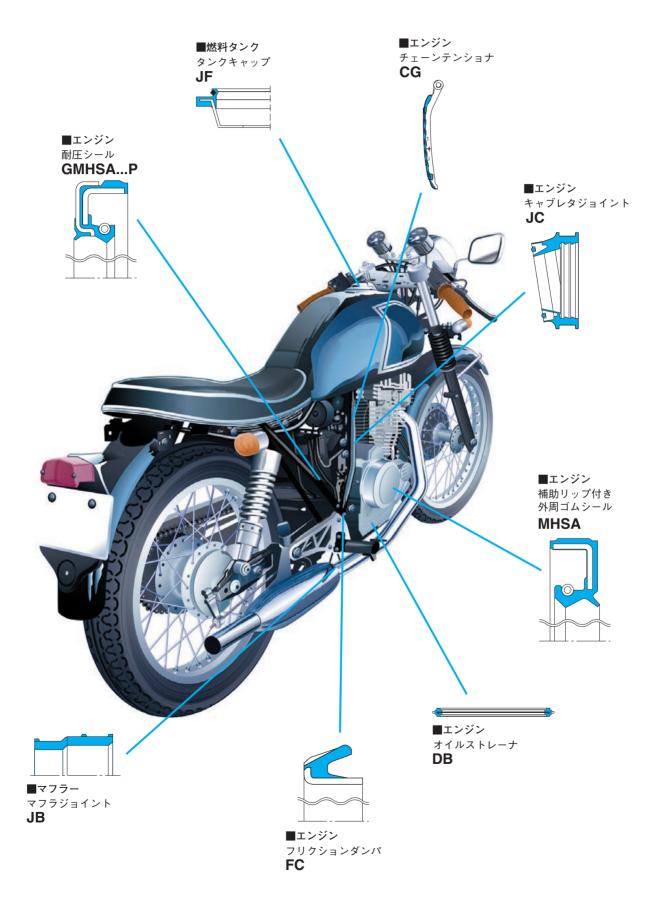
単位:mm

VIO	1 000							∓ \(\overline{\pi}\) \(\overline{\pi}\)			
	Oリングのマ	法				溝部の寸法					
内径	$d_1^{^{1)}}$	太さ d ₂	呼び番号 G ₁		71	G_2	b ^{+0.1} 0	$h_{-0.2}^{0}$			
14.5	±0.20		V 15	15		25					
23.5	±0.24		V 24	24		34					
33.5	±0.33				V 34	34		44			
39.5	±0.37								V 40	40	
54.5	±0.49		V 55	55		65	5.0				
69.0	±0.61	4±0.10	V 70	70		80		3.0			
84.0	±0.72		V 85	85	+1.0	95					
99.0	±0.83		V 100	100	0	110					
119.0	±0.97		V 120	120		130					
148.5	±1.18		V 150	150		160					
173.0	±1.36		V 175	175		185					
222.5	±1.70		V 225	225		241					
272.0	±2.02		V 275	275		291					
321.5	±2.34	6±0.15	V 325	325		341	8.0	4.5			
376.0	±2.68		V 380	380		396					
425.5	±2.99		V 430	430		446					
475.0	±3.30		V 480	480	+1.5	504					
524.5	±3.60		V 530	530	0	554					
579.0	±3.92		V 585	585		609					
633.5	±4.24		V 640	640		664					
683.0	±4.54	10±0.30	V 690	690		714	12.0	7.0			
732.5	±4.83	10-0.50	V 740	740		764	12.0	7.0			
782.0	±5.12		V 790	790	+2.0	814					
836.5	±5.44		V 845	845	0	869					
940.5	±6.06		V 950	950		974					
1 044.0	±6.67		V 1 055	1 055		1 079					

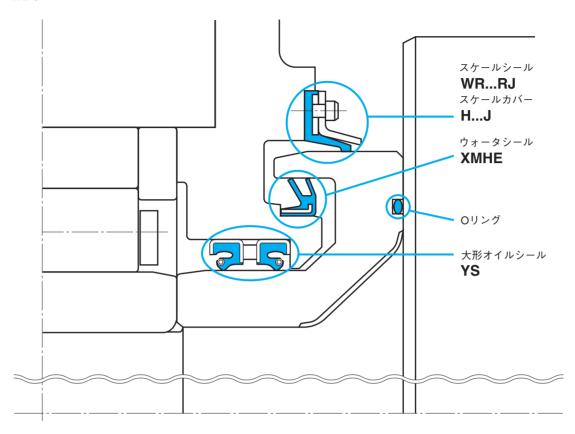

注1) 内径d1の許容差は、JIS B 2401 におけるNBR-70-1、NBR-90、NBR-70-2、EPDM-70、EPDM-90、SBR-70 (JIS規格外) の許容差を示します。

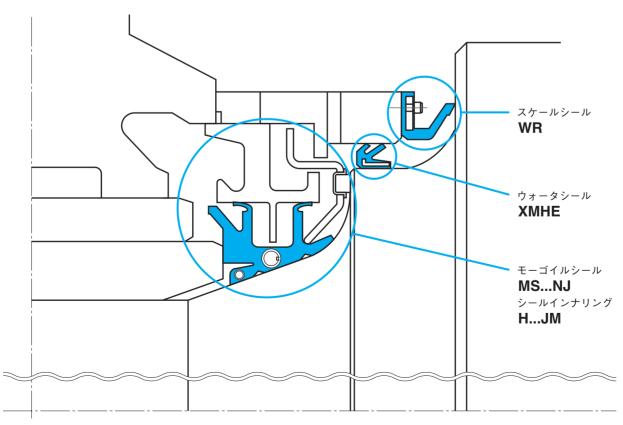
VMQ-70およびACM-70の場合はこの値の1.5倍、FKM-70およびFKM-90、HNBR-70、HNBR-90の場合は1.2倍になります。

APPLICATION オイルシール・ ロリングの使用例


3. 1 乗用車	4
3. 2 二輪車 ···································	5
3.3 圧延機ロールネック	3
3.4 鉄道車両車軸 ···································	7
3. 5 ギヤードモータ148	3
3.6 油圧モータ148	3

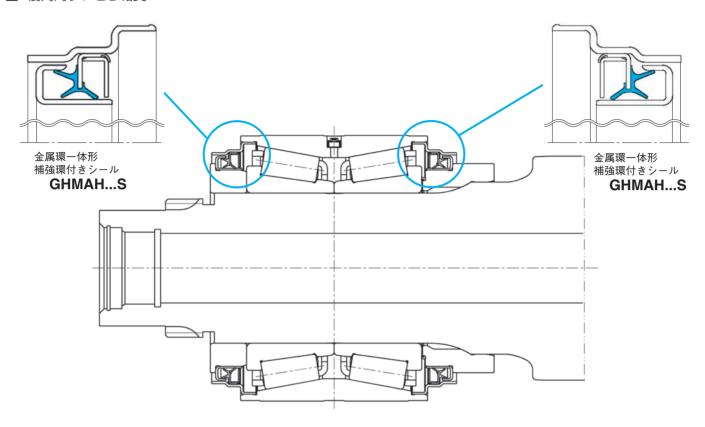
3.1 乗用車


3.2 二輪車

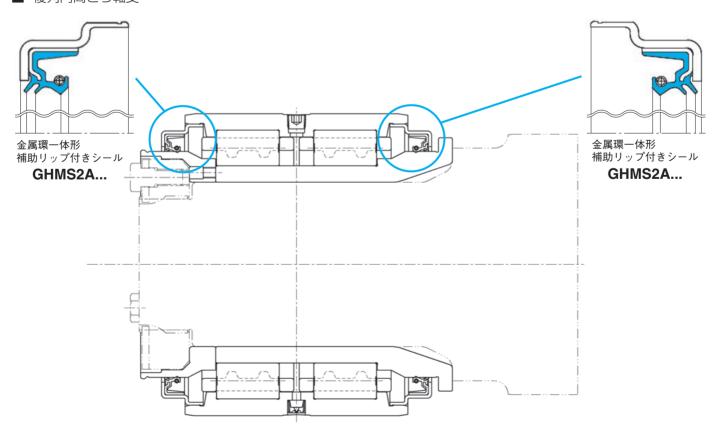

■ 3. オイルシール・Oリングの使用例

3.3 圧延機ロールネック

■ 転がり軸受

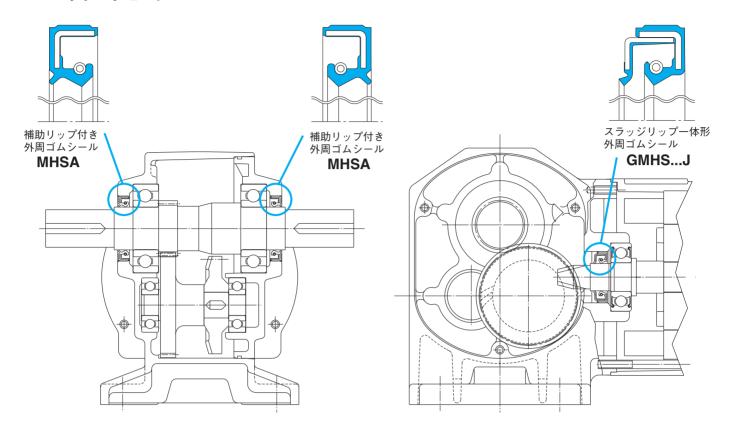


■ すべり軸受

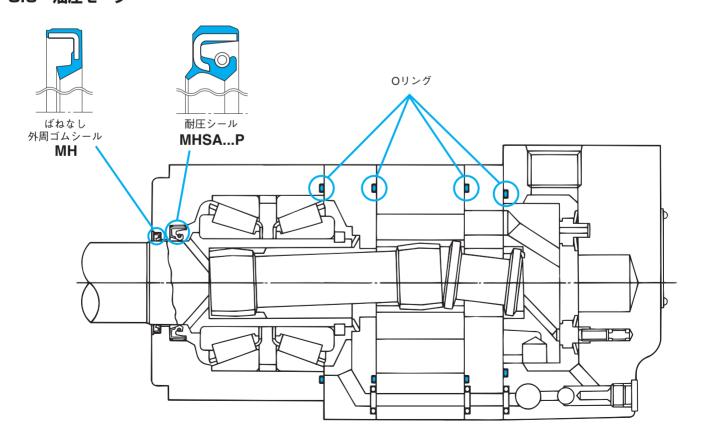


3.4 鉄道車両車軸

■ 複列円すいころ軸受



■ 複列円筒ころ軸受



■ 3. オイルシール・Dリングの使用例

3.5 ギヤードモータ

3.6 油圧モータ

4

参考資料

4. 1	各種ゴム材料の種類と特性150
4. 2	SI単位換算表152
4. 3	軸の寸法許容差156
4. 4	ハウジング穴の寸法許容差158
4. 5	硬さ換算表160
4. 6	粘度換算表161
4. 7	周速早見図表162

ブライルシール 設計製作仕様書

.....164

■ 4.1 各種ゴム材料の種類と特性 ■

4.1 各種ゴム材料の種類と特性

本表はゴム材料全般を比較したものであり、オイルシール・Oリング材料に適さない材料も掲載しています。

◎:耐性があります

△:特定の場合を除いて耐性がありません

○:特定の場合を除いて耐性があります

×:耐性がありません

	ゴムの種類 (ASTM記号)	ニトリルゴム (NBR)	水素化二トリルゴム (HNBR)	アクリルゴム (ACM, ANM)	シリコーンゴム (VMQ)	ふっ素ゴム (FKM)	クロロプレンゴム (CR)	エチレン・ プロピレンゴム (EPM, EPDM)	スチレン・ ブタジエンゴム (SBR)	ウレタンゴム (U)	天然ゴム・ イソプレンゴム (NR, IR)	ブタジエンゴム (BR)	ブチルゴム (IIR)	クロロスルホン化 ポリエチレンゴム (CSM)
	化学構造	アクリロニトリル・ ブタジエン共重合体	アクリロニトリル・ブタジ エン共重合体・水素化物	アクリル酸エステル 共重合体	有機ポリシロキサン	6ふっ化プロピレン・ ふっ化ビニリデン共重合体	ポリクロロプレン	エチレン・プロピレン 共重合体	スチレン・ブタジエン 共重合体	ポリウレタン	ポリイソプレン	ポリブタジエン	イソブチレン・イソプレン 共重合体	クロロスルホン化 ポリエチレン
純ゴムの性質	/ — *FF	0.96~1.02 30~130	0.98~1.00 65~85	1.09~1.10 45~60	0.95~0.98 液状	1.80~1.82 35~160	1.15~1.25 45~120	0.86~0.87 40~100	0.92~0.97 30~70	1.00~1.30 25~60 (または液状)	0.92 45~150	0.91~0.94 35~55	0.91~0.93 45~80	1.11~1.18 30~115
	可能なJIS硬さ範囲 ¹⁾ 引張強さ(MPa) 切断時伸び(%) 反発弾性	20~100 5~25 100~800	40~100 5~30 100~800	40~90 7~12 100~600	30~90 3~12 50~500	50~90 7~20 100~500 △	10~90 5~25 100~1 000	30~90 5~20 100~800	30~100 2~30 100~800	60~100 20~45 300~800	10~100 3~35 100~1 000	30~100 2~20 100~800	20~90 5~20 100~800	50~90 7~20 100~500
配合ゴムの	 	0	0	Δ Ο Ο	×~△ ×~△ ×~○	0 0	0~0		Δ ⊚	0	0	() () () ()		© ©
ムの物理的性質および耐性	使用可能温度範囲(℃) 耐老化性 耐候性	-50~120 ©	-40~160 ©	-30~180 ©	-80~250 ⊚ ⊚	-30~250 ◎ ◎	-60~120 ©	-60~150 ©	-60~70 O	-60~80 O	-75~90 O	-100~100 O	-60~150 ©	-60~150 ◎ ◎
および耐性	耐オゾン性 耐炎性 電気絶縁性(Ω・cm) (体積固有抵抗)	$\begin{array}{c} \times \\ \times \sim \triangle \\ 10^2 \sim 10^{11} \end{array}$	○ ×~△ -	© ×~△ 10 ⁸ ~10 ¹⁰	© ×~○ 10¹¹~10¹6	© © 10 ¹⁰ ~10 ¹⁴	0 10 ¹⁰ ~10 ¹²	© × 10 ¹² ~10 ¹⁶	X X 10 ¹⁰ ~10 ¹⁵	$0 \times \sim \Delta$ $10^{9} \sim 10^{12}$	× × 10 ¹⁰ ~10 ¹⁵	X X 10 ¹⁴ ~10 ¹⁵	© × 10 ¹⁶ ~10 ¹⁸	0 0 10 ¹² ~10 ¹⁴
	ガス透過性 (10 ⁻¹⁶ m ⁴ /N・s)	0.03~0.35	_	1	40	0.1	0.3	1.5	1.2	0.2	1.8	1.3~5	0.09~0.1	0.3
	耐放射線性	△~○	△~○	×~0	△~◎	△~○	Δ~()	×	0	0	△~○	×	×	△~○
	ガソリン・軽油 ベンゼン・トルエン		0	0	×~△	0	0	×	×	©	×	×	× Δ~Ο	
	アルコール	×~△ ⊚	×~△ ⊚	×	×~△ ⊚	© ©	×		×	×~△ △	×	×		×~∆ ⊚
西己	エーテル	×~△	×~△	×	×~△	×~△	×~Δ		×		X	×	Δ~0	×
配合ゴ	ケトン (MEK)	×	×	×	0	×	Δ~0	0	Δ~()	×	Δ~()	Δ~0	<u> </u>	^ △~○
Δ	酢酸エチル	×~△	×~△	×	△~◎	×	×	0	×~△	Δ	×~△	×~△	0	×
の耐	水	©		Δ	0	©	©	·		Δ	©		©	©
油	有機酸	×~△	×~△	×	0	×	×~△	×	×	×	×	×	△~○	Δ
品性	高濃度無機酸	0	0	Δ	Δ	0	0	0	Δ	×	Δ	Δ	©	©
	低濃度無機酸	0	0	0	0	0	0	0	0	\triangle	\circ	0	0	0
	高濃度アルカリ	0	0	Δ	0	×	0	0	0	×	0	0	0	0
	低濃度アルカリ				○ ○ ○	△ 2年ゴ/++の中	<u> </u>		一	X		一	サフ*を回性が	
		最も代表的な耐油性ブルオー耐	長所に加えて耐	ニトリルゴムに		各種ゴム材の中 で種々の耐性に		性に優れる。	天然ゴムに比 べ耐摩耗性・			ゴム弾性に優れ機械的強度		
			熱性・機械的強			もっとも優れ厳			耐老化性が良			が良い。耐油		
			度が優れる。高			しい環境に対応	く、防振ゴム・	材や電線の被				性、耐圧性は		
	代表的特性と主な用途		温・油圧用オイ					で電泳の板でであれる。				劣り、タイ		
	1 A7K - 1 L 3 LT C T - (0.1 L) KG		ルシール材料な			ン周りに最適。	れ、オイルシー	S(- X1)1(0)	使われる。			ヤ・運動用品		
		用が多い。	どに最適。	クシャフト、バ			ル・Oリング材		201000	境で使われる。		などに使われ		
		7,13,5 5 0.0		ルブステムなど			料として使用す			-50 C X 15 1 C W 6	われる。	る。 る。		
				に多用。			ることもある。				12100			
			1	I.	I.	l.	 	1	1	l .	1	1	1	1

<u>注</u>1) デュロメータで測定した硬さです。

参考文献: (財) 日本規格協会 新版ゴム材料選択のポイント (社) 日本ゴム協会 ゴム工業便覧第四版

■ 4.2 SI単位換算表 ■

4.2 SI単位換算表

SI単位換算表(1)

星星	SI 単位	SI 以外の単位 ¹⁾	SI単位への換算率	SI 単位からの換算率
角 度 angle	rad (ラジアン)	。(度) ※ (分) ※ (秒) ※	$1' = \pi / 10 800 \text{ rad}$	1 rad=57.295 78°
長 さ length	m (メートル)	$ \mathring{\mathbb{A}} \left(オングストローム \right) \\ \mu (ミクロン) \\ \text{in} \left(\mathcal{I} \mathcal{J} \mathcal{F} \right) \\ \text{ft} \left(\mathcal{I} - \mathcal{F} \right) \\ \text{yd} \left(\mathcal{V} - \mathcal{F} \right) \\ \text{mile} \left(\mathcal{Y} \mathcal{I} \mathcal{I} \mathcal{I} \right) $	1 Å = 10^{-10} m=0.1 nm=100 pm 1 μ =1 μ m 1 in=25.4 mm 1 ft=12 in=0.304 8 m 1 yd=3 ft=0.914 4 m 1 mile=5 280 ft=1 609.344 m	1 m=10 ¹⁰ Å 1 m=39.37 in 1 m=3.280 8 ft 1 m=1.093 6 yd 1 km=0.621 4 mile
面 積 area	m ²	$a(\mathcal{P}-\mathcal{J}\nu)$ $ha(\wedge \mathcal{I}\mathcal{S}-\mathcal{J}\nu)$ $acre(\mathbf{I}-\mathcal{I})$	1 a=100 m ² 1 ha=10 ⁴ m ² 1 acre=4 840 yd ² =4 046.86 m ²	1 km ² =247.1 acre
体 積 volume	m ³	ℓ , L (リットル) ※ cc (シーシー) gal (US) (米ガロン) $floz$ (US) (米オンス) $barrel$ (US) (米バレル)	1 ℓ = 1 dm ³ = 10 ⁻³ m ³ 1 cc=1 cm ³ = 10 ⁻⁶ m ³ 1 gal (US)=231 in ³ =3.785 41 dm ³ 1 floz (US)=29.573 5 cm ³ 1 barrel (US)=158.987 dm ³	1 m ³ =10 ³ ℓ 1 m ³ =10 ⁶ cc 1 m ³ =264.17 gal 1 m ³ =33 814 floz 1 m ³ =6,289 8 barrel
時 間 time	s (秒)	min (分)		
角 速 度 angular velocity	rad/s			
速 度 velocity	m/s	kn (ノット) m/h ※	1 kn=1 852 m/h	1 km/h=0.539 96 kn
加 速 度 acceleration	m/s²	G(ジー)	1 G=9.806 65 m/s ²	1 m/s ² =0.101 97 G
周 波 数 frequency	Hz (ヘルツ)	c/s(サイクル毎秒)	1 c/s=1 s ⁻¹ =1 Hz	
回 転 速 度 rotational frequency	s ⁻¹	rpm (回每分) min ⁻¹ ※ r/min	1 rpm=1/60 s ⁻¹	1 s ⁻¹ =60 rpm
質 量 mass	kg (キログラム)	t(トン) ** lb(ポンド) gr(ゲレーン) oz(オンス) ton(UK)(英トン) ton(US)(米トン) car(カラット)	1 t=10 3 kg 1 lb=0.453 592 37 kg 1 gr=64.798 91 mg 1 oz=1/16 lb=28.349 5 g 1 ton (UK)=1 016.05 kg 1 ton (US)=907.185 kg 1 car=200 mg	1 kg=2.204 6 lb 1 g=15.432 4 gr 1 kg=35.274 0 oz 1 t=0.984 2 ton (英トン) 1 t=1.102 3 ton (米トン) 1 g=5 car

注1) ※ :SI以外の単位で、継続使用する単位として、国際度量衡委員会(CIPM)で認められている単位

無印:用いてはならない

SI単位換算表(2)

量	SI 単位	SI 以外の単位 ¹⁾	SI 単位への換算率	SI 単位からの換算率
密 度 density	kg/m³			
線 密 度 linear density	kg/m			
運 動 量 momentum	kg • m/s			
運動量モーメント moment of momentum 角 運 動 量 angular momentum				
慣性モーメント moment of inertia	kg•m²			
カ force	N (ニュートン)	dyn (ダイン) kgf (重量キログラム) gf (重量グラム) tf (重量トン)	1 dyn=10 ⁻⁵ N 1 kgf=9.806 65 N 1 gf=9.806 65×10 ⁻³ N 1 tf=9.806 65×10 ³ N	1 N=10 ⁵ dyn 1 N=0.101 97 kgf
		lbf (重量ポンド)	1 lbf=4.448 22 N	1 N=0,224 809 lbf
力のモーメント moment of force	N・m (ニュートンメートル)	gf · cm kgf · cm kgf · m tf · m lbf · ft	1 gf • cm=9.806 65×10 ⁻⁵ N • m 1 kgf • cm=9.806 65×10 ⁻² N • m 1 kgf • m=9.806 65 N • m 1 tf • m=9.806 65×10 ³ N • m 1 lbf • ft=1.355 82 N • m	1 N • m=0.101 97 kgf • m 1 N • m=0.737 56 lbf • ft
圧 カ pressure 応 カ normal stress	Pa (パスカル) or N/m² {1 Pa=1 N/m²}	gf/cm ² kgf/mm ² kgf/m ² lbf/in ² bar (パール) at (工学気圧) mH ₂ O, mAq (水柱メートル) atm (気圧) mHg (水銀柱メートル)	1 gf/ cm ² =9.806 65×10 Pa 1 kgf/mm ² =9.806 65×10 ⁶ Pa 1 kgf/m ² =9.806 65 Pa 1 lbf/in ² =6 894.76 Pa 1 bar=10 ⁵ Pa 1 at=1 kgf/cm ² =9.806 65×10 ⁴ Pa 1 mH ₂ O=9.806 65×10 ³ Pa 1 atm=101 325 Pa 1 mHg=101 325 Pa 1 Torr=1 mmHg=133.322 Pa	1 MPa=0.101 97 kgf/mm ² 1 Pa=0.101 97 kgf/m ² 1 Pa=0.145×10 ⁻³ lbf/in ² 1 Pa=10 ⁻² mbar 1 Pa=7.500 6×10 ⁻³ Torr
粘 度 viscosity	Pa・s (パスカル秒)	P(ポアズ) kgf・s/m²	10 ⁻² P=1 cP=1 mPa • s 1 kgf • s/m ² =9.806 65 Pa • s	1 Pa • s=0.101 97 kgf • s/m ²
動 粘 度 kinematic viscosity	m²/s	St (ストークス)	10^{-2} St=1 cSt=1 mm ² /s	
表 面 張 力 surface tension	N/m			

■ 4.2 SI単位換算表 ■

SI単位換算表(3)

量	SI 単位	SI 以外の単位 ¹⁾	SI 単位への換算率	SI 単位からの換算率
仕 事 work エネルギー energy	J (ジュール) {1 J=1 N・m}	eV(電子ボルト) ※ erg(エルグ) kgf・m lbf・ft	1 eV=(1.602 189 2±0.000 004 6)×10 ⁻¹⁹ J 1 erg=10 ⁻⁷ J 1 kgf • m=9.806 65 J 1 lbf • ft=1.355 82 J	1 J=10 ⁷ erg 1 J=0.101 97 kgf • m 1 J=0.737 56 lbf • ft
仕 事 率 power	W (ワット)	erg/s (エルグ毎秒) kgf・m/s PS (仏馬力) HP (英馬力) lbf・ft/s	1 erg/s=10 ⁻⁷ W 1 kgf • m/s=9.806 65 W 1 PS=75 kgf • m/s=735.5 W 1 HP=550 lbf • ft/s=745.7 W 1 lbf • ft/s=1.355 82 W	1 W=0.101 97 kgf • m/s 1 W=0.001 36 PS 1 W=0.001 34 HP
熱力学温度 thermo-dynamic temperature	K (ケルビン)			
セルシウス温度 celsius temperature	℃ (セルシウス度) {t℃=(t+273,15) K}	°F(カ氏度)	$t^{\circ}F = \frac{5}{9} (t-32)^{\circ}C$	$t^{\circ} C = (\frac{9}{5}t + 32)^{\circ} F$
線膨張係数 linear expansion coefficient	K ⁻¹	℃ ⁻¹ (毎度)		
熱 heat	J (ジュール) {1 J=1 N・m}	erg (エルグ) kgf・m cal rr (I.T.カロリー)	1 erg=10 ⁻⁷ J 1 cal rr=4.186 8 J 1 Mcal rr=1.163 kW • h	1 J=10 ⁷ erg 1 J=0.238 85 cal it 1 kW • h=0.86×10 ⁶ cal it
熱 伝 導 率 thermal conductivity	W/(m • K)	$W/(m \cdot ^{\circ}C)$ cal/ $(s \cdot m \cdot ^{\circ}C)$	1 W/ (m • °C)=1 W/ (m • K) 1 cal/ (s • m • °C)=4.186 05 W/ (m • K)	
熱 伝 達 係 数 coeffcient of heat transfer	W/(m² • K)	$W/(m^2 \cdot ^{\circ}C)$ cal/(s · m ² · °C)	1 W/ (m ² • °C)=1 W/ (m ² • K) 1 cal/ (s • m ² • °C)=4.186 05 W/ (m ² • K)	
熱容量 heat capacity	J/K	J/°C	1 J/°C=1 J/K	
比 熱 容 量 massic heat capacity	J/ (kg • K)	J/(kg • °C)		

注1) ※ :SI以外の単位で、継続使用する単位として、国際度量衡委員会(CIPM)で認められている単位

無印:用いてはならない

SI単位換算表(4)

星	SI 単位	SI 以外の単位 ¹⁾	SI 単位への換算率	SI 単位からの換算率
電 流 electric current	A (アンペア)			
電 荷 electric charge 電 気 量 quantity of electricity	C (クーロン) {1 C=1 A・s}	A • h **	1 A • h=3,6 kC	
電 圧 tension 電 位 electric potential	V (ボルト) {1 V=1 W/A}			
静 電 容 量 capacitance	F (ファラド) {1 F=1 C/V}			
磁界の強さ magnetic field strength	A/m	Oe (エルステッド)	$1 \text{ Oe} = \frac{10^3}{4\pi} \text{ A/m}$	$1 \text{ A/m} = 4 \pi \times 10^{-3} \text{ Oe}$
磁 東 密 度 magnetic flux density	$ \left\{ \begin{array}{l} T \\ (\mathcal{F}\mathcal{A}\mathcal{\bar{P}}) \\ 1T = 1N/(A \cdot m) \\ = 1Wb/m^2 \\ = 1V \cdot s/m^2 \end{array} \right\} $	Gs (ガウス) γ(ガンマ)	1 Gs= 10^{-4} T 1 $\gamma = 10^{-9}$ T	1 T=10 ⁴ Gs 1 T=10 ⁹ γ
磁 束 magnetic flux	Wb (ウェーバ) {1 Wb=1 V・s}	Mx (マクスウェル)	1 Mx=10 ⁻⁸ Wb	1 Wb=10 ⁸ Mx
自己インダクタンス self inductance	H (ヘンリー) {1 H=1 Wb/A}			
抵抗(直流) resistance (to direct current)	Ω (オーム) {1Ω=1 V/A}			
コンダクタンス (直流) conductance (to direct current)	S (ジーメンス) {1 S=1 A/V}			
有 効 電 力 active power	$ \left\{ \begin{array}{l} W \\ 1 W=1 J/s \\ =1 A \cdot V \end{array} \right\} $			

JTEKT

4.3 軸の寸法許容差

																																		単位 μm
径の区分 mm	}						軸	の :	公 差	域(ラ	ス																					径の m	
を超えり	下	d 6	e 6	e 7	e 8	e 9	f 6	f 7	f 8	g 5	g 6	h 5	h 6	h 7	h 8	h 9	h 10	js	js 6	js 7	j 5	j 6	k 5	k 6	k 7	m5	m6	m7	n 5	n 6	р6	r6 r7	を超え	以下
_	3	- 20 - 26	- 14 - 20	- 14 - 24	- 14 - 28	- 14 - 39	- 6 - 12	- 6 - 16	- 6 - 20	- 2 - 6	- 2 - 8	0 - 4	0 - 6	0 - 10	0 - 14	0 - 25	0 - 40	± 2	± 3	± 5	± 2	+ 4	+ 4	+ 6	+ 10 0	+ 6 + 2	+ 8 + 2	+ 12 + 2	+ 8 + 4	+ 10 + 4	+ 10 + 6	+ 16 + 20 + 10 + 10	_	3
3	6	- 30 - 38	- 20 - 28	2032	2038	- 20 - 50	- 10 - 18	- 10 - 22	- 10 - 28	- 4 - 9	- 4 - 12	0 - 5	0 - 8		0 - 18	0 - 30	0 - 48	± 2.	± 4	± 6	+ 3 - 2	+ 6	+ 6 + 1	+ 9 + 1	+ 13 + 1	+ 9 + 4	+ 12 + 4	+ 16 + 4	+ 13 + 8	+ 16 + 8	+ 20 + 12	+ 23 + 27 + 15 + 15	7 3	6
6	10	- 40 - 49	- 25 - 34	2540	- 25 - 47	- 25 - 61	- 13 - 22	- 13 - 28	- 13 - 35	- 5 - 11	- 5 - 14	0 - 6	0 - 9	0 - 15	0 - 22	0 - 36	0 - 58	± 3	± 4.5	± 7.5	+ 4 - 2	+ 7	+ 7 + 1	+ 10 + 1	+ 16 + 1	+ 12 + 6	+ 15 + 6	+ 21 + 6	+ 16 + 10	+ 19 + 10	+ 24 + 15	+ 28 + 34 + 19 + 19	l b	10
10	18	- 50 - 61	- 32 - 43	- 32 - 50	- 32 - 59	- 32 - 75		- 16 - 34	- 16 - 43	- 6 - 14	- 6 - 17	0 - 8	0 - 11	0 - 18	0 - 27	0 - 43	0 - 70	± 4	± 5.5	± 9	+ 5	+ 8 - 3	+ 9 + 1	+ 12 + 1	+ 19 + 1	+ 15 + 7	+ 18 + 7	+ 25 + 7	+ 20 + 12	+ 23 + 12		+ 34 + 4° + 23 + 23	10	18
18	30	- 65 - 78	- 40 - 53	- 40 - 61	4073	4092	- 20 - 33	- 20 - 41	- 20 - 53	- 7 - 16	- 7 - 20	0 - 9	0 - 13	0 - 21	0 - 33	0 - 52	0 - 84	± 4.	± 6.5	±10.5	+ 5 - 4	+ 9 - 4	+ 11 + 2	+ 15 + 2	+ 23 + 2	+ 17 + 8	+ 21 + 8	+ 29 + 8	+ 24 + 15	+ 28 + 15	+ 35 + 22	+ 41 + 49 + 28 + 28	I IX	30
30	50	- 80 - 96	- 50 - 66	- 50 - 75	- 50 - 89	- 50 -112	- 25 - 41	- 25 - 50	- 25	- 9	- 9 - 25	0 - 11	0 - 16	0	0 - 39	0 - 62	0	± 5.	± 8	±12.5	+ 6	+ 11	+ 13	+ 18	+ 27	+ 20	+ 25	+ 34		+ 33 + 17	+ 42 + 26	+ 50 + 59 + 34 + 34	30	50
		-100	- 60	- 73 - 60	- 60	- 60		- 30				0	0	0	0	0	0				_ 5	+ 12	+ Z	+ 21	+ 32	+ 24	+ 30	+ 41	+ 33	+ 39	+ 51	+ 60 + 7° + 41 + 4°	50	65
50	XII	-119 -119	- 79	- 90	-106	-134			1		- 29	- 13	_	- 30	- 46	_		± 6.	± 9.5	±15		- 7				+ 11		+ 11		+ 20	+ 31		3 65	80
		120	72	- 72	- 72	- 72	- 36	- 36	- 36	- 12	- 12	0	0		0	0	0					. 12	. 10	+ 25	, 20	+ 28	+ 35	+ 48	+ 38	+ 45	+ 59	+ 73 + 86 + 51 + 5	80	100
80	120	-120 -142	- 72 - 94	- 72 -107	- 72 -126			- 71		- 12		- 15	_	- 35	- 54	- 87	-140	± 7.	±11	±17.5	+ 6 - 9	- 9				+ 13			+ 23			+ 76 + 89	100	120
																																+ 54 + 54 + 88 +103	120	140
120	IXU	-145	I	- 85					- 43				0	0	0	0	0	± 9	±12.5	±20				+ 28									140	160
	=	-170	-110	-125	-148	-185	- 68	- 83	-106	- 32	- 39	- 18	- 25	- 40	- 63	-100	-160				- 11	- 11	+ 3	+ 3	+ 3	+ 15	+ 15	+ 15	+ 2/	+ 2/	+ 43	+ 93 +108	3 160	
																																+ 68 + 68 +106 +123	3 190	
180	250	-170		-100		-100				- 15		0	0	0	0	0	0	±10	±14.5	±23				+ 33								+ 77 + 77 +109 +120	300	
	-	-199	-129	-146	-172	-215	79	- 96	-122	- 35	- 44	- 20	- 29	- 46	- 72	-115	-185				- 13	- 13	+ 4	+ 4	+ 4	+ 17	+ 17	+ 17	+ 31	+ 31	+ 50	+113 +130) 225	250
																																+ 84 + 84 +126 +146	350	280
250	41h	-190 -222	-110 -142	-110 -162	-110 -191	-110 -240		- 56 -108		- 17 - 40	- 17 - 49	0 - 23	0 - 32	0 - 52	0 - 81	0 -130	0 -210	±11.	±16	±26	+ 7 - 16	± 16	+ 27 + 4	+ 36 + 4		+ 43 + 20			+ 57 + 34			+ 94 + 94 +130 +150) 280	
																																+ 98 + 98 +144 +165	315	355
315	21111	-210 -246	-125 -161	-125 -182	-125 -214			- 62 -119		- 18 - 43		0 - 25	0 - 36	0 - 57	0 - 89	0 -140	0 -230	±12.	±18	±28.5	+ 7 - 18	1 + IX	+ 29 + 4	+ 40 + 4	+ 61 + 4	+ 46 + 21	+ 57 + 21		+ 62 + 37			+108 +108 +150 +17	355	
																																+114 +114 +166 +189	1	450
400		-230 -270	-135 -175	-135 -198	-135 -232						- 20 - 60	0 - 27	0 - 40	0 - 63	0 – 97	0 -155	0 -250	±13.	±20	±31.5	+ 7 - 20		+ 32 + 5	+ 45 + 5	+ 68 + 5	+ 50 + 23	+ 63 + 23	+ 86 + 23	+ 67 + 40			+126 +126	5 400	
																																+132 +132 +194 +220	2 430	500
500	630	-260 -304	-145 -189	-145 -215			- 76 -120			- 22 - 54	- 22 - 66	0 - 32	0 - 44	0 - 70	0 -110	0 -175	0 -280	±16	±22	±35	_	_	+ 32	+ 44		+ 58 + 26			+ 76 + 44			+150 +150 +199 +225) 500	560
			. 50					. 10								.,,							<u> </u>									+155 +155 +225 +255	5 300	
630		-290 -340	-160 -210	-160 -240	-160 -285		- 80 -130		- 80 -205		- 24 - 74	0 - 36	0 - 50	0 - 80	0 -125	0 -200	0 -320	±18	±25	±40	_	_	+ 36		+ 80	+ 66 + 30			+ 86 + 50			+175 +175 +235 +265	030	
		2.0							255		, ,		30		1.20	250							<u> </u>			. 50	. 50	. 50	. 50	. 55	. 50	+185 +185 +266 +300	710	800
800 1		-320 376	-170	-170						- 26	- 26	0	0	0	0	0	0	±20	±28	±45	_	_	+ 40			+ 74			+ 96			+210 +210) 800	900
		-376	-226	-260	-310	-400	-142	-176	-226	- 66	- 82	- 40	- 56	- 90	-140	-230	-360							0	0	+ 34	+ 34	+ 34	+ 56	+ 56	+100	+276 +310 +220 +220		1 000

156

4.4 ハウジング穴の寸法許容差

単位 µm

径の区分						穴 0) 公	差域	ク :	ラ ス								径の区	
mm を超え 以下	E 6	F6	F 7	G6	G7	Н6	H7	Н8	Н9	H10	JS5	JS6	JS7	J 6	J 7	K5 K6 K7 M5 M6 M7 N5 N6 N7 P6 P7	R7 を	mn E超え	
3 6	+ 28	+ 18 + 10	+ 22 + 10	+ 12 + 4	+ 16 + 4	+ 8	+ 12	+ 18	+ 30	+ 48	± 2.5	± 4	± 6	+ 5 - 3	± 6	0 + 2 + 3 - 3 - 1 0 - 7 - 5 - 4 - 9 - 8	- 11 - 23	3	6
6 10	+ 3/	+ 22 + 13	+ 28 + 13	+ 14 + 5	+ 20 + 5	+ 9		+ 22	+ 36	+ 58	± 3	± 4.5	± 7.5	+ 5 - 4	+ 8 - 7	+ 1 + 2 + 5 - 4 - 3 0 - 8 - 7 - 4 - 12 - 9		6	10
10 18	1 /13	+ 27 + 16	+ 34 + 16	+ 17 + 6	+ 24 + 6	+ 11	+ 18			+ 70	± 4	± 5.5	± 9	+ 6 - 5	+ 10	+ 2 + 2 + 6 - 4 - 4 0 - 9 - 9 - 5 - 15 - 11		10	18
18 30	⊥ 53	+ 33	+ 41 + 20		+ 28 + 7	+ 13	_	+ 33	+ 52 0	+ 84 0	± 4.5	± 6.5	±10.5		+ 12	+ 1 + 2 + 6 - 5 - 4 0 - 12 - 11 - 7 - 18 - 14		18	30
30 50	⊥ 66		+ 50 + 25	+ 25	+ 34 + 9	+ 16		+ 39	+ 62 0	+100	± 5.5	± 8	±12.5	+ 10	+ 14	+ 2 + 3 + 7 - 5 - 4 0 - 13 - 12 - 8 - 21 - 17		30	50
	+ 79		+ 60		+ 40			+ 46	+ 74	+120					+ 18		- 30 - 60	50	65
50 80	+ 60		+ 30		+ 10	0	0	0	0	0	± 6.5	± 9 . 5	±15		- 12	- 10 - 15 - 21 - 19 - 24 - 30 - 28 - 33 - 39 - 45 - 51		65	80
	+ 94	+ 58	+ 71	+ 34	+ 47	+ 22	+ 35	+ 54	+ 87	+140				+ 16	+ 22		- 38 - 73	80	100
80 120		+ 36			+ 12	0	0	0	0	0	± 7 . 5	±11	±17.5		- 13	- 13 - 18 - 25 - 23 - 28 - 35 - 33 - 38 - 45 - 52 - 59		100	120
																	- 48 - 88	120	140
120 180	+110 + 85	+ 68 + 43	+ 83 + 43	+ 39 + 14	+ 54 + 14	+ 25 0	+ 40 0	+ 63 0	+100 0	+160	± 9	±12.5	±20		+ 26 - 14		- 50	140	160
																	- 53 - 93	160	180
																	- 60	180	200
180 250		+ 79 + 50		+ 44 + 15		+ 29 0	+ 46 0	+ 72 0	+115 0	+185 0	±10	±14.5	±23		+ 30 - 16	+ 2 + 5 + 13 - 11 - 8 0 - 25 - 22 - 14 - 41 - 33 - 18 - 24 - 33 - 31 - 37 - 46 - 45 - 51 - 60 - 70 - 79		200	225
																	- 67	225	250
050 215	+142	+ 88	+108	+ 49	+ 69	+ 32	+ 52	+ 81	+130	+210	. 11.5	. 10	. 00	+ 25	+ 36	+ 3 + 5 + 16 - 13 - 9 0 - 27 - 25 - 14 - 47 - 36	- 74 -126	250	280
250 315	+110		+ 56		+ 17	0	0	0	0	0	±11 . 5	±10	±26		- 16	- 20 - 27 - 36 - 36 - 41 - 52 - 50 - 57 - 66 - 79 - 88	70	280	315
215 400	+161	+ 98	+119	+ 54	+ 75	+ 36	+ 57	+ 89	+140	+230	. 10 E	. 10	. 20 E	+ 29	+ 39		- 87 -144	315	355
315 400	+125	+ 62	+ 62	+ 18	+ 18	0	0	0	0	0	±12 . 5	±10	±28.5	- 7	- 18	- 22 - 29 - 40 - 39 - 46 - 57 - 55 - 62 - 73 - 87 - 98	- 93 -150	355	400
400 500	+175	+108	+131	+ 60	+ 83	+ 40	+ 63	+ 97	+155	+250	±13.5	±20	±31.5	+ 33 - 7	+ 43	+ 2 + 8 + 18 - 16 - 10 0 - 33 - 27 - 17 - 55 - 45	- 166	400	450
400 500	+135	+ 68	+ 68	+ 20	+ 20	0	0	0	0	0	±13.3	±20	±31.5	- 7	- 20	- 25 - 32 - 45 - 43 - 50 - 63 - 60 - 67 - 80 - 95 -108	-109 -172	450	500
500 630	+189	+120	+146	+ 66	+ 92	+ 44	+ 70	+110	+175	+280	±16	±22	±35			0 0 0 - 26 - 26 - 26 - 44 - 44 - 44 - 78 - 78	-150 -220	500	560
300 030	+145	+ 76	+ 76	+ 22	+ 22	0	0	0	0	0	10				_		-155 -225	560	630
630 800	+210	+130	+160	+ 74	+104	+ 50	+ 80	+125	+200	+320	±18	±25	±40		_	0 0 0 - 30 - 30 - 30 - 50 - 50 - 50 - 88 - 88	-255	630	710
030 000	+160	+ 80	+ 80	+ 24	+ 24	0	0	0	0	0	-10		± 4 0			- 36 - 50 - 80 - 66 - 80 - 110 - 86 - 100 - 130 - 138 - 168	-185 -265	710	800
800 1 000	+226		+176		+116	+ 56	+ 90	+140	+230	+360	±20	±28	±45		_	0 0 0 - 34 - 34 - 34 - 56 - 56 - 56 - 100 - 100	-300	800	900
	+170	+ 86	+ 86	+ 26	+ 26	0	0	0	0	0	±2U						-310	900	1 000
1 000 1 250	+261	+164	+203		+133	+ 66	+105	+165	+260	+420	±23 . 5	±33	±52.5		_	0 0 0 - 40 - 40 - 40 - 66 - 66 - 66 - 120 - 120	-355	000	1 120
1 000 1 200	+195	+ 98	+ 98	+ 28	+ 28	0	0	0	0	0	-23.3		±32.0			- 47 - 66 -105 - 87 -106 -145 -113 -132 -171 -186 -225	-260 -365 1	120	1 250

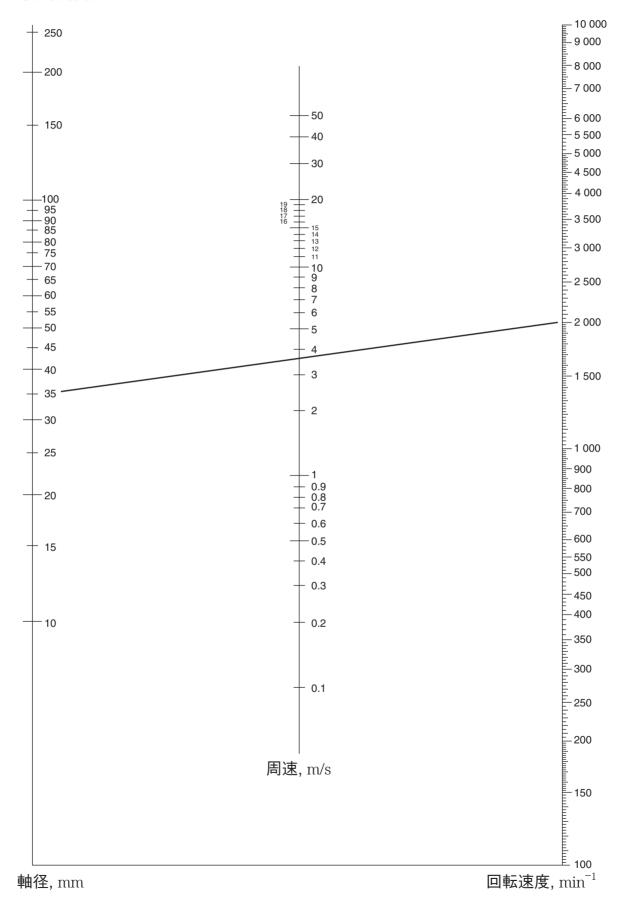
158

■ 4.5 硬さ換算表 ■

4.5 硬さ換算表

ロックウェル		ブ リ	ネル	ロック	ウェル	
Cスケール	ビッカース		タングステン	A スケール	Bスケール	ショア
1 471.0 N		標準鋼球	カーバイト鋼球	588.4 N	980.7 N	
68	940			85.6		97
67	900			85.0		95
66	865			84.5		92
65	832		739	83.9		91
64	800		722	83.4		88
63	772		705	82.8		87
62	746 720		688 670	82.3 81.8		85 83
61 60	697		654	81.2		81
59	674		634	80.7		80
58	653		615	80.1		78
57	633		595	79.6		76
56	613		577	79.0		75
55	595	_	560	78.5		74
54	577	_	543	78.0		72
53	560	_	525	77.4		71
52	544	500	512	76.8		69
51	528	487	496	76.3		68
50	513	475	481	75.9		67
49	498	464	469	75.2		66
48	484	451	455	74.7		64
47	471	442	443	74.1		63
46	458		32	73.6		62
45	446		21	73.1		60
44	434		09	72.5		58
43	423		00	72.0		57
42	412		90	71.5		56
41	402		81	70.9		55
40	392		71	70.4		54
39 38	382 372		62 53	69.9 69.4	_	52 51
37	363		44	68.9		50
36	354		36	68.4	(109.0)	49
35	345		27	67.9	(108.5)	48
34	336		19	67.4	(108.0)	47
33	327		11	66.8	(107.5)	46
32	318		01	66.3	(107.0)	44
31	310	2:	94	65.8	(106.0)	43
30	302	28	86	65.3	(105.5)	42
29	294		79	64.7	(104.5)	41
28	286		71	64.3	(104.0)	41
27	279		64	63.8	(103.0)	40
26	272		58	63.3	(102.5)	38
25	266		53	62.8	(101.5)	38
24	260		47	62.4	(101.0)	37
23	254		43	62.0 61.5	100.0	36 35
22 21	248 243		37 31	61.5 61.0	99.0 98.5	35
20	238		31 26	60.5	97.8	34
(18)	230		20 19		96.7	33
(16)	222		12	_	95.5	32
(14)	213		03	_	93.9	31
(12)	204		94	_	92.3	29
(10)	196		87		90.7	28
(8)	188		79		89.5	27
(6)	180		71		87.1	26
(4)	173		65		85.5	25
(2)	166	1	58		83.5	24
(0)	160	1	52		81.7	24

JTEKT


4.6 粘度換算表

動粘度 mm²/s	セイス SUS			・ ウッド (秒)	エングラ E (度)	動粘度 mm²/s	セイス SUS	ドルト (秒)		`ウッド (秒)	エングラ E (度)	
mm/s	100 °F	210 °F	50 °C	100 °C	· C (1克)	mm/s	100 °F	210 °F	50 °C	100 °C	- L (反)	
2	32.6	32.8	30.8	31.2	1.14	35	163	164	144	147	4.70	
3	36.0	36.3	33.3	33.7	1.22	36	168	170	148	151	4.83	
4	39.1	39.4	35.9	36.5	1.31	37	172	173	153	155	4.96	
5	42.3	42.6	38.5	39.1	1.40	38	177	178	156	159	5.08	
6	45.5	45.8	41.1	41.7	1.48	39	181	183	160	164	5.21	
7	48.7	49.0	43.7	44.3	1.56	40	186	187	164	168	5.34	
8	52.0	52.4	46.3	47.0	1.65	41	190	192	168	172	5.47	
9	55.4	55.8	49.1	50.0	1.75	42	195	196	172	176	5.59	
10	58.8	59.2	52.1	52.9	1.84	43	199	201	176	180	5.72	
11	62.3	62.7	55.1	56.0	1.93	44	204	205	180	185	5.85	
12	65.9	66.4	58.2	59.1	2.02	45	208	210	184	189	5.98	
13	69.6	70.1	61.4	62.3	2.12	46	213	215	188	193	6.11	
14	73.4	73.9	64.7	65.6	2.22	47	218	219	193	197	6.24	
15	77.2	77.7	68.0	69.1	2.32	48	222	224	197	202	6.37	
16	81.1	81.7	71.5	72.6	2.43	49	227	228	201	206	6.50	
17	85.1	85.7	75.0	76.1	2.54	50	231	233	205	210	6.63	
18	89.2	89.8	78.6	79.7	2.64	55	254	256	225	231	7.24	
19	93.3	94.0	82.1	83.6	2.76	60	277	279	245	252	7.90	
20	97.5	98.2	85.8	87.4	2.87	65	300	302	266	273	8.55	
21	102	102	89.5	91.3	2.98	70	323	326	286	294	9.21	
22	106	107	93.3	95.1	3.10	75	346	349	306	315	9.89	
23	110	111	97.1	98.9	3.22	80	371	373	326	336	10.5	
24	115	115	101	103	3.34	85	394	397	347	357	11.2	
25	119	120	105	107	3.46	90	417	420	367	378	11.8	
26	123	124	109	111	3.58	95	440	443	387	399	12.5	
27	128	129	112	115	3.70	100	464	467	408	420	13.2	
28	132	133	116	119	3.82	120	556	560	490	504	15.8	
29	137	138	120	123	3.95	140	649	653	571	588	18.4	
30	141	142	124	127	4.07	160	742	747	653	672	21.1	
31	145	146	128	131	4.20	180	834	840	734	757	23.7	
32	150	150	132	135	4.32	200	927	933	816	841	26.3	
33	154	155	136	139	4.45	250	1 159	1 167	1 020	1 051	32.9	
34	159	160	140	143	4.57	300	1 391	1 400	1 224	1 241	39.5	

備考) 1 mm²/s=1 cSt (センチストークス)

■ 4.7 周速早見図表

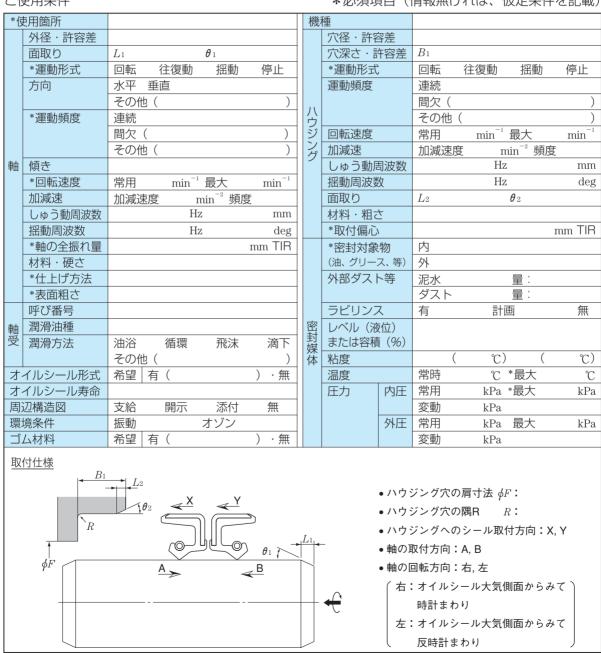
4.7 周速早見図表

JTEKT

■ 5. オイルシール設計製作仕様書

5. オイルシール設計製作仕様書

※JTEKTにオイルシール選定をご依頼される場合、その他ご要望・ご質問などは、このオイルシール設計製作仕様書(1)(2)に必要事項をご記入の上、最寄りの事業所までご連絡ください。


株式会社ジェイテクト 行き

オイルシール設計製作仕様書(1)

ご芳名	TEL	
社名·所属	FAX	
所在地		
E-mail		

1. ご使用条件

*必須項目(情報無ければ、仮定条件を記載)

☆正しい選定を行うため、可能な限り詳細にご記入ください

株式会社ジェイテクト 行き

オイルシール設計製作仕様書(2)

軸径	変更	可・	否	ϕ	mmまで	オイルシール形式	希望	有() · 無
ハウジング穴径	変更	可・	否	ϕ	mmまで	ゴム材料	希望	有() · 無
幅	変更	可・	否		mmまで	その他			
オイルシール寿命									
取付箇所 詳細図									
(取付部分の図面だ	があれば	ば添付	くだる	さし1)					
その他ご要望・ご覧	<u>質問</u>								
☆正しい選定を行う	t-14	=T4比+	-rRB h	= Y 4m/- 7 ,=7.7	ノゼナい				

〈製造〉 株式会社ジェイテクトシーリングテクノ

https://www.sealing.jtekt.co.jp/

本社・工場 な 088-692-2711 FAX 088-692-8096 〒771-1295 徳島県板野郡藍住町笠木字西野39番地

〈販売〉

株式会社ジェイテクト

https://www.jtekt.co.jp

商品についてのお問い合わせ

ジェイテクト国内拠点

https://www.jtekt.co.jp/company/japan.html

JTEKTベアリングWEBサイト

https://koyo.jtekt.co.jp/

販売代理店ネットワーク

https://koyo.jtekt.co.jp/network/

ジェイテクト海外拠点

https://www.jtekt.co.jp/company/global.html

株式会社ジェイテクト

www.jtekt.co.jp

☆本カタログの記載内容は、改良等のため予告なしに変更する場合があります。なお、内容の正確さには 万全の注意を払っておりますが、万が一誤記・脱漏・製本上の落丁等による損害は責任を負いかねます。

無断転載を禁ず